
dm Build Your Own SCSI Interface (A500/1000)

'AC* TECHAmiga
Volume 2 Number i

ism 1.95 Canada 519.95

DO-IT-YOURSELF HARD DRIVES

Programming the Amiga in Assembler

Implementing an ARexx Interface in C

Programming the Amiga's GUI in C—Part IV

CAD Application Design—Part III

Low-Level Disk Access

Designing a Ray Tracer—Part II

AudioProbe in Modula-2

Writing MusicX Protocols

7U7QV8640

Build Your Own
MIDI Interface

HINK ALL '040

ACCELERATORS ARE THE SAME?

THINK AGAIN!

As a highpowerAmiga 30003000T
useryou needa 68040 accelerator

hoard lor one reason

.

. . andone

reason only ...SPEED!

Ami once you knovi what nukes one
6SQ40aiceleratnr better tlun another.

the (inly Kurd you'll want is the

G-FORCE 040 from GVP

WATCH 001 FOR SLOW DRAM BOTTLENECKS

)< - .ili toQ40CFU sarc created equal

bur this doesn't mean ihat all accelerator

boards allow ur A3000 lo nuke the

4bost of the 68040 CPU's incredible

"performance

The AKKH) wjk designed io work with

low-cost, 80ns DRAM |memory! tech-

nology. As a result, anytime the '040

CPU accesses the A.iOOO motherboard.

memory lots oi CPU waiuaates arc

introduced and all the reasons you
hnu>Jit your accelerator literally come
to a screeching halt!

Not true for the G-FORCE 040

SOLUTION: THE G-FORCE 040*1 fAST, 40ns,

ON BOARD DRAM

To eliminate this memory access bottle-

neck, we designed a special 1MB, 32-bit

wide, non-multiplexed, SIMM module
using 40ns DRAMs (yes, iotty niino-

secoadsl] This revolutionary memory
module allows the G-FORCE 040 to be

populated wuh up to 8MB ol statc-oi-thc-

art, high performance, onboard DRAM
Think ol rhi~ as I Kiam 8MB cache which

lets the 040 CPU race along at the top

performance Speeds you paid lor

SHOP SMART: COMPARE THESE G-FORCE 040
SPECS TO ANY OTHER TWO ACCELERATOR

68040 CPU running at l^Mh; provid-

ing 22 MIPS and 175 MaOPS!
NOTE. The 6&040 imoiportitf

MMU, FPUand icpainw ^Kfi data and

Uon caches oaa single chip.

^ to 8MB of onboard,
|

.

40ns, non-multiplexed, DRAM.
Fully autoconligured, user-install-

able SIMM modules lets you expand

your A3000 to 24MB!

fe> DRAM controller design hilly supports

the hs040 CPU'* burst memory access

mode.

»> Full DMA Diieci Memory Access

to/from the onboard DRAM by any
A3000 pcnpheral |e.g the A.JOOO's built

in hard disk controller),

fe> Asynchronous design allow

the 68040 to run at clock

Speeds independent oi the

A3000 motherboard speed.

Allows easy upgrade to .J.JMhz

68040,over 15J MIPS! I
when available

from Motorola.

b> Hardware support lor allowing V2
Kickstan ROM to be copied into jnd

mirrored by the high performance on-

board DRAM. Its like caching the entire

operating system!

k> Software switchahk 68030 "tailback'

mode for full backward compatibility

wuh the AJOOO's native 68030 CPU.

b> Incorporates CVl's proven quality,

experience and leadership in Amiga
leratoi products.

TRY A RAM DISK PERFORMANCE TEST AN0 SE
FOR YOURSELF HOW THE C FORCE 040 OUT

PERFORMS IHE COMPETITION

ur dealer to run any RAM disk" per

tormancc test and see the G-FORCE 040 s

amazing powers m action.

So now that you know the facts, order

vour G-FORCE 040 today. After all. the

only reason why you need an '040 accel-

erator is SPEED]

G-FORCE

itav.-JL

?
Up la Bmi ol high

spied (AOnsl DfUM
Motoroli 68040 CPU

running n ?B At/)/

A3000 ~CM/ l>or Connector

GREAT VALLEY PRODUCTS INC.
600Cl.wk Avenue, Kw* Pruofi^ PA

For more information or your nearest GVP
dealer, call today. Dealer inquiries welcome.

Tel. (215) 337-8770 • FAX (215) 337-9922

Circle 105 on Reader Service card TM1Q.-.M

'->-
I

'- • -.:^'i M

Contents Volume 2, Number 1

AC TFXJI/amiga

4 Spartan—Build Your Own SCSI Interface

For Your Amiga 500/1 000 by Paul Market
Stop swapping disks! Slep up productivity inexpensively by building
this complete SCSI hard drive project (includes software on disk')

13 CAD Application Design—Part III by Forest w. Arnold
Develop an architecture (or implementing geometric objects as true object-
onented objects—using plain ANSI C and some programming magic.

27 Implementing an ARexx Interface

In Your C Program by David Blackwell

Pari one of structured approach to adding ARexx capabilities to your
application wntten inC

41 The Amiga and the

MIDI Hardware Specification byjamescook
Understanding the MIDI narOware specification—and build your
own MIDI hardware interface'

45 Programming the Amiga in 680x0 Assembler
—Part I by William P. Nee

Learn to program the Amiga in 680x0 assembler 1 Includes A68K
assembler on disk"

53 Programming the Amiga's GUI in C
—Part IV by Paul Castonguay

The popular programming tutonal continues with faster and advanced draw routines!

65 Programming a Ray Tracer in C—Part II by Bruno Costa
The practical usage of the illumination model theory, with many commented examples Irom
the 'ray' ray-tracer (on disk).

71 Low-Level Disk Access In Assembly byDanBabcock
(Develop an easy-to-use set ol routines tor performing floppy access
without the a«J ol the operating system.

79 Writing Protocols for MusicX by Damei Barrett

A step-by-step approach to writing protocols to get that MIDI synthesizer to work with MusicX

86 AudioProbe—
Experiments in Synthesized Sound with Modula-2 byjimoimger
Explore the application of analog synthesizer concepts to Amiga sound generation

Departments

3 Editorial

49 Source and Executables ON DISK!
64 List of Advertisers

printf ("Hello") ;

//print "Hello

JSR printMsg

say "Hello"

writeln("Hello")

HIiatcAor lail^oa^r you speak. \< "s I 1 (II

provides a platform lor both gaining insiulil

mid sharing information on iis most
innovative implrmciilalioii for ihc Amif*a.

\\U\ not see if your lairsi programming
riidoavor can help a follow \miun user

expand upon his or her vocabulary? To be

considered for publication in \i *s I I < II.

submit voiir technical IS oriented article

(both hard <*«»p\ & disk) to:

\c S rECH submissions

l'i\! I'uhlioiiions, Inc

One Curiam Place

Fall River. MA "I'll

AC TEOI/amiga
ADMINISTRATION

Publisher

Assistant Publisher:

Circulation Manager:
Asst. Circulation:

Corporate Trainer;

Traffic Manager:

Joyce Hicks

Robert J. H**S
Dons Gamble
Traci Desmarais
Virgmta Terry Hicks

Robot Gamble
International Coordinator: Donna Vtve<ros

Marketing Manager: Emest P ViveirosSr

Programming Artist: E Paul

EDITORIAL

Managing Editor:

Technical Coordinator:

Associate Editor:

Hardware Editor:

Technical Editor:

Copy Editors:

Video Consultant:

Art Director:

Photographer:

Illustrator:

Production Assistant:

Don Hicks

Ernest P Vivei'os. Jr.

Jeff Gamble
Ernest P Vive-ros Sr

J Michael Morrison

Ttmmomy Duarte

Paul Larnvee

Frank McMahon
Rick Hess
Paul Michael

Brian Fox

vawneGamw*

ADVERTISING SALES
Advertising Manager: Donna Mane
Advertising Associate: Wayne A-ruda

1-508-678-4200

1-800-345-3360

FAX 1-508-675-6002

SPECIAL THANKS TO:
R«hardWard4RESC0

AC'i ICCH for Ttit Ca«"M0(l Ars.ga- ISSN Oil
7 i 7 li i outHnntfl flj*'!»*if Bi PiW PuoTicaiiori MM One
Curranl Raid " Bo* 869 Fall Rltar, «* 02722-08M

SuBic-piiCi ill lit US. I mui >oi I 4 7
. I 1 is Canada 1

lieilte swfaci II 1 .11 tort-gn luiiace tor i i s . » s

Appi-eanon is mail H Second dan poiiage ratal paneling al

(ail Rnar, HA 02722

POSTHASTES Se"d acd'eii change t to PiH Poolreatiom

inc
.
P Boi >B9 Fall B,.ar UA 02722080 Pnnlrt in

ma U S A Copfigni© '»t. 1 99? e, PiU Publication) Inc

II '•»•-. ad

First CUSS or An Uj > ratal avaiiaoU upo>* (aouait PiU
PuBiicationa inr maintain ma r.gnt to 'alula an»

ad.eiMmg

PiM Publication) in- it no: otiligaltd To rtli»r« uniOI'Cited

material! Ail requeued >aturni mull Da rtcenfO '' a Sa"
Addtanad Slar-pen Ua'a-

Sand HIKte aub*niioni in Bom n*nU | C r.pi and dn" lormat
ll* «our name addran laiapnon*. and Social StcuMr

Nu--oe' on tacn lo the Editor Requeiti tor Author a Gtndti
i"-Ci.id Ba directed to lh« add'ait iiiled abo.e

AUiGA'-.i a regulates liaOnark at

Co-"3COr« Amiga Inc

AC'S TECH 1M

Startup-Sequence

Its Official—AmigaDOS 2.04!

Move over AmigaDOS 1.3...AmigaDOS 2.04 is officially

here! The OS code has been frozen. The final release version of

AmigaDOS release 2 is 2.04 with Kickstart v37.175, and Work-
bench v37.67. These are the OS versions that are being put into

ROM in the new machines and the Enhancer Kit (upgrade for the

A5O0/2OO0).

Easy Upgrades

UpgradingAmiga 500sand 2000s will be accomplished via

the 2.04 Enhancer Kit. which will be available through the autho-

rized dealer channel. This will be a ROM and software upgrade.
Once the new 2.04 ROMs are in, say goodbye to AmigaDOS 1.3,

forever. However, there are several third parties that are develop-

ing, or have developed ROM Towers (switches) for the A500/
2000. These ROM Towers hold both 1 .3 and 2.04 KickStart ROMs
and allow selection of the boot ROM via an externally mounted
switch. Add a little intelligence to your startup sequence, and
presto! Dualpersonality! Any side effects? Hmmm.. It's tooearly

to say, but there is at least one potential problem: AmigaDOS 1 .3

does not recognize AmigaDOS 2.04 hard links. These will look

like empty filesunder 1.3. If anything, these will cause • little (or

lots) of confusion. Just be cautious...

A3000-I Want My ROM
What about an upgrade (or the original Amiga 3000 with

the SuperKickstart? Sources at Commodore say that a free 2.04

upgrade will be made available through the dealer channel. This
will be a five disk sofluwt upgrade (3000 Install, Workbench,
Extras, AmigaFonts, and KickStart.) Dealers are authorized to

charge a nominal copying fee for the disks. Will there be a 2.04

ROM upgrade /system trade-in for the SuperKickstart Amiga
3000s? At press time thedetailsare unspecified, but there isa plan
on the table. Ask you dealer for more specific information.

What about running AmigaDOS 1 .3 on an A3000 with 2.04

in ROM? You can't ..right now. The A3000 uses two 256K ROMs
as opposed to a single 512K ROM on the A500/2000. It's this

reason, plus a hundred other engineering and legal reasons, that

you won't see an A3000 ROM Tower switch. However, I'm sure

that some bright entrepreneur/developer will come up with a
way (i.e. marketable product) to boot AmigaDOS 1 .3 on an A3000
with 2.04 in ROM.

What's your best bet on upgrading a SuperKickstart A3000
to AmigaDOS 2.04? If you haw to run AmigaDOS 1 .3, then stay

with a software upgrade—at least until there is another way to

run 1 .3on a 2.04 machine. Ifyou area developer, then its probably
a good idea to stay with the SuperKickstart so you can continue
to easily get and install system software upgrades. Go with the

hardwareupgrade ifyou need to use a 68040CPU in your A3000.
The new ROMs fixed cachebugsand added OS cache calls. Also,

it is rumored that some SCSI devices do not like to see the old

1 .4B5 ROMs. In these cases, the 2.04 ROM are required.Take your
pick.

Finally, starting with AmigaDOS 2.04, all new A3000s will

come with AmigaDOS 2.04 in ROM.

Looking to thefuture...

Next step AmigaStep?

One of the better applications bundled with the powerful
UNIX-based NeXT™ workstations is its extremely powerful
application-builder NeXTStep™. NeXTStep is an extremely in-

tuitive, easy-to-use, yet incredibly powerful GUI/application
builder, which puts the power of real programming into the
hands of the power user. NeXTStep is not an everyman'ssolution

to programming, but it does open up programming to the ad-
vanced user, who has the mindset to program, but can't get over

the complexities of programming theGUI at the medium-to-low
level. NeXTStep can also be used in a lower-level capacity to

develop commercial-quality software.

Rumor has it that Commodore is actively working on an
application builder that will be NeXTStep and more! This versa-

tile and powerful application builder will be able to handle all

aspects of the Amiga GUI, ARexx, IDCMP, font sensitivity, and
more. When can we expect to see this programming marvel? No
one's talking, but a good guess says that they'll have it in beta

sometime during the first quarter of '92.
1 can hardly wait...

Ernest P. Viveiros, Jr.

Technical Coordinator

Vol. 2, Num. 1 1991

I

AC'S TECH™

BuildA SCSI Interfacefor Your

Amiga 500/1000 byPaviH^r

CAUl ION: Be careful whenattempting to builA 1 t haul wareprojects to vour
computet AlwaysCheck your work twice beforeattaching the prelect towur computer
Att>ithinen Home-built project to your Amiga may tviil iteuurranty PiM Pub!
hu. lis agents, or the author. i> not ttspeitsiblefor any faulting damages from (Ml

careand common tease

are like many Amiga users, you spend entirely loo

much time swapping disks and get bored waiting for your icons

to display and your programs to load. Perhaps it is time to add a

hard drive. The first step in adding a hard drive is the interlace

between the computer and the drive. Fbf the Amiga, thedefacto
standard is SCSI (Small Computer System Interlace). Spartan is a

build-it-yourselfSCSl hard drive interface lor the A ringa 300 and
1000. UsingCPU (non-DMA) da tatransii-r>. Spartan is capable of
data transfer rates of well over 300K per second—more than

adequate for the averageAmiga user Spartan is100%compatible
With all Amiga software, in. hiding popular hard drive utilities

such as Quarterbai k.

Spartan supports all standard SCSI hard drives, removable
mediaSC SIdrivessuchastheSyQuest,andeventiieotdiBMtvpe
ST-506/41 2 drives (see Adaptec Sidebar). Drives can be assigned

to seven different SCSI addresses, and up to fourteen hard drives

can he controlled.

Physically, the Spartan SCSI interlace consists of a small

circuit board connected to the expansion bus of the Amiga. Using
the powerful AM5380SCSI control IC, two standard ni. chips,

and a few capacitors and resist, its, ilu- interlace gives your Amiga
the ability tocommunicate with standard SCSI drives. The inter-

lace address in memory is selectable to avoid conflict with ex-

pansion memory or other add-on hardware To remain inex-

pensive and to keep the circuit simple, the Spartan interface does
not support autoconliguration or autobooting.

The Spartan device driver is ,i tiny 2048-bytc tile which is

loaded via the MOUNT command, and a properly edited

mountlist. I.ow-level format routinesareprovided torSCSIdrives.

and lor Adaptec controllers Also included is the 'C source code
the the love-level format routines to allow modification forsup-

portofnon-standardSCSI drives, or control of other types ofSCSI
dev ices.

Addressing

The Spartan interlace iswhatisknown asa memorymapped
device. This deviates from the AutoConfig method utilized by
man v dev iceson the Amiga. AutoConfig looks for an unused area

in memory, and then assigns that address to the hardware. Due
to the simplicity of the spartan circuit design, we must do the job

of locating a safe area in memory ourselves. As Spartan decodes
memory in o-IK blocks, the safe area to which the interface is

addressed will be refered to by it's "base address." The base

address is the high byte of the actual address. As an example, if

the address is 2FFFFF. then the base address is 21

There are two areas in the Amiga'smemory map which are

good candidates for locating Spartan. First, the area from F00000

to F80000 is unused by theAmiga operating systemand makes 17

(address F70O00) a perfect base address for your interlace. How-
ev er, if you have an Amiga 500 expansion memory cartridge such

as AdRam 540 or similar units with more than 500K of expansion,

you may not be able to use this address. This is because thev

remap this area for expansion RAM. The normal one half MB
A501 or A50I clone expansions will NOT interfere with this

address. If you are in doubt, refer the the documentation that

came with your expansion as to where it installs memory.
It v.hi are unable to locate your interface at base address F7,

then you must locate it between 200000 and 8FFFFF. This area ts

normally used for expansion memory, however, unless you have
a full 8MB, there will be room to address the interface. The
documentation whichcame with your memory expansion should
allow you to locate an unused area within this range. For ex-

ample, if your expansion memory is:

Start End

200000 10 27FFF
400000 to 47FFF

800000 to 87FFF

then a base address from 28 to 3F and from 48 to 7F would be
valid.

Vol. 2, Num. 1 1991

Regardless of whether your base address isF7orelsewhere
in the memory map, nolo the address, as it will be used in

configuring bofh your hardware and software

BuMngtliehtierface

By tar the easiest and most reliable method of building the

interface is to obtain the etched and drilled circuit boardavaUabte
from the author. If you wish to etch your own board, the pattern

isprovided in Figure 1. Ifyouwish tobuild usinganother method
of construction, see Figure 2 for the schematic. A carefully built

wire wrapped circuit should have no problems if you keep wire
lengths to a reasonable minimum The following assembly dis-

< usskm refers to the etched circuit board, but should be helpful

for any type construction.

Metering to the placement guide (Figure 3) note that all parts

on the interface are inserted from the component side of the

board. That is, the side WITHOUT the copper traces. Insert and
carefully solder the three 1C sockets in place. If you examine the

sockets, you will notice one end ha* a small notch. Be sure this

notch is at the pin 1 end as indicated in Figure 3.

Insert muI solder the resistor packs (RP1, Rl^, RP3, RP4) as

indicated, again paying attention to the orientation of pin 1. Pin
I is indicated by a stripe or dot on the part. Insert and solder CI,
C2, and C3 as indicated, and clip the leads neatly. Note the

polarity of C4 on Figure 3. The capacitor itself has one lead

marked + on the side of the capacitor. Insure that this lead is

inserted as indicated. Solder and clip the leads.

Install nine jumpers as indicated using either your left over

capacitor leads, or small lengths of wire. Solder and neatlv trim

the jumpers. Next, insert and solder the 50-pin SCSI connector

The 86-pin connector to the Amiga poses a bit of a problem.

For simplicity of design, the board is constructed so that the

connector slot i.s parallel to the board. Normally this requires an
86 pin right angle connector. That is, the pins exiting from the

back of the connector make a right angle turn. However these

connectors are not available in small quantities. If you are lucky
enough to locate one, simply solder it in place. Otherwise you can
modify the connector listed on the parts list to do the job nicely.

Refering to Figure 4, carefully bend one row of pins on the

connecter at a right angle. Insert this bent row of pins into the row
of holes CLOSEST to the edge of the board. You may wish to put
a drop or two of super glue to fix the connector in place on the

board. Once in place, solder the row of pins. Now, using short

lenghts of wire, such as resistor leads, connect the remaining pins

of the connector the the corresponding hole as shown in the

drawing. Solder in place both at the pin, and on the circuit board.

Install the dip switch as indicated. The dip switches are for

setting the base address of your interface. Refering to Figure 5,

you can see that each switch refers to a bit in the base address \

closed switch is a 0, and an open switch is a 1. Several example
settings are shown, fust note that the high bit is the switch closest

to the SCSI connector and the low bit is the switch closest to the

Amiga connector. Set the switches to agree with your base ad-

dress.

Check your parts placement, and soldering. Insure that you
have no solder "bridges". All it takes isone 'OOPS'andyou could
damage your interface or computer. Once you aredone checking
your work, have someone else double check it for you. If all

checks OK, proceed with inserting the IC's.

NOTE: IC's areSTATICSENSITIVE. Use proper measures
to prevent damage. If you are unsure of how to do this, please

have someone who is, insert your IC's for you.

Figure One
The Spartan PCB Layout

AC'S TECH™

Figure Two The Spartan Schematic Layout

ALL CAPACITANCES IN MICROFARADS
C1-C3 CERAMIC DISK

C4 TANTALUM

SPARTAN
SCSI INTERFACE

<C)1991 PaulHarker

Insert the three IC's in their respective sockets, insuring that

pin one is correctly positioned. The pin one end can be identified

by either a notch at the end, or a dot next to pin one. This pin one
should be at the pin one end of the socket. This completes the

assembly of your Spartan interface!

Assembling the SCSI System

In addition to (he Spartan interface and software you will

require the following:

SCSI Hard Dnve (or Adaptec 40X0/ST506-4 1

2

combination)

50-Pm SCSI Cable

IBM PC/XT type power supply

Power cable for power supply

Enclosure for dnve and power supply

An IBM 'clone' case will accept both the power supply and
the hard drives nicely, and are available inexpensively from
many sources. While powering a small hard drive directly off the

power supply of the Amiga 1000 is possible, 1 don't recommend
it and it is absolutely prohibited with the minimal power supply

of the 500.

Vol. 2. Num. 1 1991

Figure Three
PCB Component Placement

Figure Four

86 Pin Connector Modification

Use Short Length of

Wire and Solder at

Both Ends.

Bend At Right Angle
ana Solder.

Ensure that the Amiga is turned off and connect the as-

sembled Spartan interface to the expansion bus. On the 500,

simply remove the snap on cover from the left end. and firmly

push the interface in place (components lacing up if using the

etched board). On the 1 000, the interface installson the right side
of the computer (once again, component side up).

At this time, take a deep breath, and powerup your Amiga.
If it does not boot up properly, IMMEDIATELY turn the power
offand recheck all your work. If you continue to have problems,
see the section on PROBLEMS.

Turn off your Amiga. Install the 50 pin SCSI cable between
the interface and your hard drive. Insure that pin 1 of the cable is

at the pin 1 end of the connectors at both ends. Recheck all

connections. Once you are sure your cabling is correct, proceed
with formatting.

Formatting

Hard drives require two forms of formatting, the low-level

(physical) format, and the high-level (logical) format. The high-
level format iswhat you are already familiar with. That is, it is the
type of format you perform when using the 'Format' command
from AmigaDOS or 'Initialize' from the Workbench. The low-
level format,which is only usedon hard drives, marks bad sectors

of the drive as unusable, sets the interleave (more on this later)

and stores important information about the configuration.

A set of low-level format utilities, AFormat, for Adaptec
controller /ST506 drive combinations, and SFormat, for standard
SCSI drives, are included on disk. These are executed from the

CLI by typing 'AFormat' or 'SFormat' at theDOS prompt. You are

then presented with a series of questions about your particular

configuration. Once these are answered, it then performs a com-
plete low-level format of your drive. These programs tie up the

SCSI bus completely, so do not attempt any other SCSI access

while performing a low-level format, or you will meet theGURU.
To perform the low-level format, first boot your Amiga, and

open a CLI. Turnon thepower supply to the hard drive. The hard
drive will go through some initialization activity. This mav be
indicated by the flashing of the led on the drive and controller.

Once this activity is finished, run the low-level format utility for

your drive. You will beprompted for information regarding your
particular configuration. AFormat requires much more informa-

tion than does SFormat. You need to know several things about
your hard drive to perform a low-level format. This information

should have been included with the drive A text file on disk,

'DriveSpecs', gives the needed information for many popular
hard drives. If you can't find information for your drive, contact
(he drive manufacturer.

AFormat will prompt you for:

Mount your drive and power supply in your enclosure,

insuring that the circuitry does not short to the case or to another
component. Layout is not important. Plug a power connector
from yourpower supply into the power socket on the hard drive.

Set the SCSI address of your drive to as directed by theowners
manual.

Base address

Adaptec Card Type

SCSI Address

Onvet

Number of Cylinders

Number ot Heads

Step rate

Interleave

Reduced Wnte Current

Enter Cylinder f

Base address in HEX
Enter 1 lor the 4000(A), 2 tor the 4070

Enter the drrves address

Dnve connects to JO and Drive 1 connects

to Ji (reler to the Adaptec Manual).

Enter the number ot cyhnders

Enter the number of heads

Enter the step rate ot your dnve

Enter 2
Enter V or K
Enter the starting cylinder number

for Reduced Wnte Current.

AC'S TECHIM

AFormal will then prompt for information regarding me-
dia errorson your hard drive. This information is normally noted
on a label attached to the drive. Enter this information as re-

quested. To terminate error entry, enter a (zero) at the 'Cylin-

der:' prompt.

SFormat is much simpler to use and only prompts for base
address. SCSI address, and the interleave:

Base address

SCSI Address

interleave

Base address m HEX
Enter the dnves address

Enter 2

Following data entry, you will be given a last chance to bail

out. If you continue, the drive will become active for about 5

minutes. (20MB drive, correspondingly longer on larger drives).

Ifyou have an non-standard SCSI hard drive which will not

format with SFormat, it will work with your Spartan interface if

it has been low-level formatted. The drive can be formatted on
another computer as long as the bytes-per-block is 512. in fact

most SCSI drives are sold with a 512 byte-per-block low level

format already on them. The Macintosh and Amiga both use this

block size, so you can format your drive (low-level) on another

computer, then hook it up to your Amiga to perform the DOS
format.

For those with C language experience, the source code for

SFormat is included on disk. This can be easily modified to

conform to the low level format command sets used by non-

standard SCSI drives. This source is compilable by Aztec C.
Make a copy of your AmigaDOS 1.3 Workbench. This will

bereferedtoasyourbootdisk.Thecopyofspartan.deviceondisk

isaddressed to base address F7. If yourSpartan interface is at base

address F7, simply copy spartan.device from the DEVICE direc-

tory into the devs: directory of your boot disk. However, if you
have a base address other than F7, you must use the supplied

utilty. SetBase, to modify the base address of spartan.device.

The usage of SetBase is:

SetBase <fiiename> <BaseAddress>

DHO:

Device = spartan.device

Unit =

Flags =

Surfaces = 4

BlocksPerTracff = 17

Reserved = 2

LowCyl = ;

HighCyl = 614

Buffers = 30

BulMemType =

MaxTransfer* 131071

Slacksize = 4000

GtobVec = -1

FileSystem = LFastFiieSystem

DosType = 0x44415301

;See Text.

;not used

;Numberof heads on

;drrve

;See Text

;Don'l change

; Bottom and top

;cylinder numbers;

;
Refer lo AmigaDOS

;
manual

:Refer to AmigaDOS
;manual

;Don't change

;
Don't change

;
Don't change

;
Don't change

;Don't change

A copy of this file is on disk. Some entries require explana-

tion. Enter as the unit number for your first hard drive. Unit
numbers for additional drives are discussed in the 'Multiple

Drives' section of this article. For an intial setup enter for

LowCyland enterthenumberofcylinders, minus one. for HighCyl.

The interleave in the mountlist is ignored bv Spartan, as your
interleave has already been set by the low-level format. Enter the

blocks-per-track of your SCSI drive (17 is usual), or if using an
Adaptec controller enter 18 for the 4000(a) or 26 for the 4070.

Once this is complete, edit the Startup-Sequence of your
boot disk and add 'Mount DHO:' as the first command. Reboot
your Amiga using your boot disk. From the CLI enter:

Format dnve dhO: name MyDnveName quick

Filename will normally be 'spartan.device' (including the path),

and BaseAddress is the two character hex base address of your
interface. SetBase will create a new file named '<fi!ename>.XX'

where XX is the base address of the driver. Copy this new device

to the DEVS; directory of your boot disk and rename it

spartan.device.

Edit your mountlist to include the following (modified to

your configuration). Please note that unlike most AmigaDOS
commands, the MOUNT command is t\isr sensitive. Be sure that

the device file name and mountlist device entry match exactly.

Figure Five

SW1 Base Address Settings

SW1

Closed Switch -

Open Switch 1

Kxample Base Addresses

7 6 5 4 3 2 10
1 1 I 1 I I 1 = F7

00100000= 20

1 1 I 1 I 1 = 6F

Vol. 2, Num. 1 ©1991

PARTS LIST

PART DESC DIGI-KEY «

U1

U2

U3

74LS00 QUAD NAND GATE DM74LS00N
74HC688 6 BIT COMPARATOR MM74HC688N
(74LS688 acceptable)

AM5380PC SCSI BUS CONTROLLER (See arttcle)

Cl-3

C4

.047uW CERAMIC CAPACITOR

22ufd TANTALUM CAPACITOR

P4307(QTY 10)

P4521

RP1-3

RP4
6 PIN 220/330 Ohm TERMINATOR PACK Q1T04
10 PIN IKohm PULL-UP PACK O9102

SW1 8 POSITION DIP SWITCH CT2088

J1

J2

50 PIN SCSI CONNECTOR AHR50G-ND
86 PIN EDGE CARD CONNECTOR C5-43

18" SCSI CABLE
36* SCSI CABLE

A3AAT-5018GN0

A3AAT-5036G-ND

Wtf-Kty
Broods Ave South

P.O. Box 677

Thief R(vef FaBs. MN 56701-0677

1-800-344-4539

Computer Surplus Store

715 Sycamore Dr

Miprtas. CA 95035
(408)434-0931

Adaptec contioSers

You may omit the quick option. I low-ever, unlike a floppy

there is no need lo write to each track. Your formatting will just

take longer. You now have a fully useable hard drive which can
be accessed like any other DOS drive!

NOTE: The AmigaDOS version 1.3.2 Format command has a
small problem with Spartan. After formatting with the 1.3.2

Format command, you will get a 'Format Failed' message, and
AmigaDOS will report 'Not a DOS Disk' if you try to access the

dr)v«, Reboot, and AmigaDOS will recognize the disk as being a
properly formatted DOS disk. The older 1 2 and 1 .3 versions of

Format work without this problem.

Optimijng Performance

As you recall, when you performed your low-level format,

you needed to enter the interleave. Interleave is the method that

is used to store data on you hard drive in a manner best suited to

your particular system.

This discussion of interleave will focus mainlyon reads, but

the same information pertains to writes as well. Asa hard drive

platter spins, the data is accessed one block (312 bytes) at a time,

and then sent to the computer. As the platter advances to the next

block, often thecomputer is not quite ready to receive more data,

and the platter has to make a full revolution before the heads are

again in position to read the block. However, this full revolution

is much more time than the computer needed to be ready, and
much time is wasted. This wasted time equates to low data tranfer

speeds. What interleavedoes is alter the order inwhich blocks arc
read and written. On a hard drive without interleave (referred to

as an interleave of I), the data blocks are read/written sequen-
tially:

mi2ll3ll4|15llfill7l

But with an interleave, they are 'shuffled' evenly, as shown
in this example of an interleave of three:

1*1091041 1S1 10 1051161 11106(171

As you can see, block 01 is three blocks from block 02 (thus

an interleave of three), so that the order of access is read one, skip

two, read the next, skip two, etc. The time spent skipping blocks

allows the computer to catch up and be ready for data when the

drive is ready to send it. If the interleave is too large, the drive

skips blocks while the computer waits, and if the interleave is too

small, the drive is ready before the computer and must make an
additional full revolution.

What wewant todo is select an interleave for the hard drive

to get the best performance. The disk performance tester DPerf2
will help in this task. The author was kind enough to allow this

program to be included with Spartan. Please take the time out
now to read his documentation (on disk).

Run Dperf2on your hard drive and writedown the results.

Re-format your drive (both low-level and DOS) with various

interleaves to see what gives your system best performance. An
interleave of 2 gives best performance with many drives.

Be careful of one bug in DPerf2. If for some reason it is

unable to access the specified drive, it writes all over DFO:, so be
sure to write protect the disk in DFO:!

Adaptec Users—

To use an interim* of 1 ,
you must edit your mountlist to reflect

one less BlocksPerTrack. For example a 4000(A) controller will noiv be

BlocksPerTrack=17. and a 4070 will be Btock$PerTrack=25. You must
reboot theAmiga,and'MOUNT DH0:'for this to takeeffect. Togo back

lo an interleave other than I, restore your mountlist BlocksPerTrack.

and reboot. Note that you lose yourextra 10% storage with an interleave

of I. Refer lo the Adaptec Manualfor details.

All Drive Types—

T)ie sequencefor optimizing interleave:

Aformat or SFortnat

DOS Format

Dperf2

repeat... (Adaptec users: edit mountlist and reboot

ifgoing to/from an interleave of V

AC'S TECH

™

The Adaptec Controllers

Adaptec produces a line of hard drive controllers which

allow standard IBM type (ST50612) dnves to communicate as SCSI
drives. Each controller supports up to two hard drives The
combined cost of one ot these boards (as low as $80 from some
suppliers) and a surplus or used IBM type dnve Is often an
economical way ol adding drives lo Spartan. The Spartan software

supports the following Adaptec controllers:

4000 The original MFM model

4000A The standard MFM model
4070 Supports RLL drives

The Adaptec 4070 is an RLL (Run Length Limited)

controller. RLL is a meihod ol stnng 50% more data on a hard drive

than traditional methods. For example, a 20meg drive formats to

30meg using RLL. However, to make use of RLL encoding, an RLL
certified drive must be used Non-RLL (MFM) hard drives can be
controlled wiih the Adaptec 4000 or 4000A.

One great feature of the Adaptec controllers is an unique
method of stonng data. Due to this method of data storage, each dnve
formats to 10% LARGER than normal. So a 20meg MFM dnve would
format to 22meg. and a 20meg RLL drive would format to 33megf

To use an Adaptec controller with Spartan you would require

the following:

Adaptec Controller with User's Manual

(4000, 4000A or 4070)
ST50612 type Hard Dnve
34 Pm Card Edge Ribbon Cable

20 Pm Card to Socket Ribbon Cable

The user's manual does NOT come with the controller and
has to be ordered. Refer to this manual tor any questions you have
regarding interfacing your dnve to the Adaptec controller.

Multiple Drive Configurations

Spartan supports seven SCSI devia-s. UsingAdaptecdrives.

this allows a system containing up to 14 hard drives! Although it

is seriously doubtful that anyone would take it that tar, it is

possible. The following section details the information needed to

attach additional drives to the Spartan system.

Adaptec controller users can add a second drive (drive 1) to

the controller as described in the Adaptec manual. Be sure to

address your second drive as drive 1, and remove the terminator

resistor from drive 0.

Adding additional SCSI drives is not difficult. You need a

SCSI cable with additional connectors to daisy-chain as many
drives as you are using. Remove the terminator resistors from all

but the last drive on the SCSI cable. Also, be sure your power
supply can handle the load of the extra drives.

To communicate with drives, you need to set the SCSI
address of the drive to an unused address between and 6. Refer

to your drive manual for detailson how lo configure vour drive's

SCSI address. Address 7 is reserved by Spartan. Use this SCSI
address when performing the low-level format on this drive.

Each drivemust have it's own mountlist entry to be used as
an AmigaDOS drive. The unit number in the mountlist tells

Spartan at what SCSI address to find the drive. The following

chart demonstrates this.

MountList Unit » Assignments

Urnit

SCSI DnveO
Uniw

Dnvel

t

1 2 3
2 4 5

3 6 7

4 8 9

5 10 11

6 12 13

7 Reserved lor Spartan

Only Adaptec controllers with a second drive use the drive

I unit numbers. All other SCSI drives use the Drive numbers.
So, as an example, if you set the unit" in your mountlist to

6, Spartan will interpret this as drive at SCSI address 3.

Once a drive has been connected to the system, and a

mountlist prepared, the drive must be low-level formatted,

mounted and a DOS format performed. The drive will then be
ready for use.

Partitioning Your Drive

Unlike floppy disks, hard drives can be partitioned. What
this means, is that one large hard drivecan be made to act like two
ormoresmallerones. This isespecially useful on very largedrives
to prevent file fragmentation, and speed disk access.

Vol. 2. Num. 1 ©1991

To partition a drive,you must againedit the mountlisl. Each
partition requires a separate mountlist entry. For example, you
could partition a 20MB drive as one 10MB drive, and iwo 5MB
drives. Lets call our 10MB partition DHO:, our first 5MB partition

DH1: and our second 5MB partition DH2:.

For the purpose of ourexample letsassume our20MB drive

has 600 cylinders. If we were to mount this as a 20MB drive we
would have a mountlist entry with the following line:

LoCyl=0. HiCyl=599

To partition the drive we would first create mountlisl entries for

all three partitions (DHO: DH1: and DH2:). The mountlist entry

for DHO: we would edit the cylinders as:

LoCyl=0. HiCyl=299

This gives our DHO: access to the first half of the drive. For drive

DH1: and DH2: we would edit the mountlist entries as follows:

LoCyt=300, HiCyl=449 ;(DH1)

LoCy1=450. HiCyl=599 ;(DH2)

This gives both DHL and DH2: one quarter of our hard
drive, or 5MB each. Be sure that your partitions cylinders don't

overlap. A complete example mountlist is on the disk with the

filename Partition.exam pie. Remember that each partition re-

quires it's own mountlist entry and device name.
The drive must be low-level formatted, however separate

low-level formats are not needed or possible for partitions. Each
partition must be be MOUNTed and separately formatted with
the AmigaDOS formal command.

Hooting your Hard Drive

Although Spartan does not autoboot.itcan be easily used as
.i 5) --tem disk by means of your boot disk. First, copy the entire

-
1 intents of an original Amiga Workbench 1 .3 to your hard drive.

Replace the sstartup-sequenceonyourbootdiskwith the startup-
sequence from the Spartan archive. You may want to copy
'disk.info', also, (I'm no artist, but I like it!). What this startup-

sequence does is simply mount DHO:, ASSIGN all system dire.

tories to DHO:, then EXECUTE the startup-sequence in S: (now
assigned as DH0:S).

To boot your system, power up your computer. Insert Kickstarl

if you have a 1000. Turn on your hard drive, and wait for

initialization activity to cease. Now insert vour boot disk, and
everything else takescareof itself.Once thesystem is running, the

boot disk is no longer needed.

Notes

Amiga 500 owners may wish to leave the boot disk in the

internal drive at all times, and use a single switch to power both
computer and hard drive. However, if the hard drive has not

finished it's intializalionwhen the startup-sequence starts access-

ing it, the system will lock up. Toavoid this, insert an appropriate
length WAITcommand immediatelyafter theMOUNTcommand
in your startup-sequence.

The 5380 SCSI controller I.C. is manufactured by several

vendors, including AMD, LOGIC Devices, and NCR. I have
tested theAMD and the LOGIC Devices versions, and ol the two
only the AMDde* ke is compatible with the Spartan software.

Some ST506/41 2 drives have errors mapped on sections of
thedrive that Adaptec controllers do not format [nflseerrors Will

cause AFormat to fail. Do not enter any errors mapped in a

cylinder higher than your high cylinder, and any errors with a

bytes-from -index higher than:

Interleave of 1:

Other Interleaves:

4000(A) 4070

9792 9817

10188 10036

The most likely causes of a newly constructed interface to

not work, are solder bridges and bad solder joints. Clean your
board's foil side withisopropyl alcohol tomake it easier toseeanv
problems.

Check that your cables are all in good shape and are

properly oriented. Inspect the pin one orientation of all IC's and
r.-sistor packs (RP1,2,3). Kan 1C was installed backwards,and the

power applied, it was most likelv dest roved.

Check that C4 is installed with the * as indicated in the

drawing. If you put this in wrong, a small puff of smoke from it

will probably let you know It this happens, it can be replaced

witha tantalum capadtor with a valueoM5 to22uFat 6 volts or
more.

Another likely problem is improper addressing of either the

interface or of spartan.device, lie sure you have selected a valid

base address for your system. Check that you have properly set

the dip switches on on your interface and that you have set the
base address ol spartan.device using Sol Base.

There are two simple troubleshooting programs in the

Low-Leveldirectory, Aiest.andSTest. rheseprogramsarepaired
down versions ol AFormat and SFormat, which will not perform

a format, just establish communication with the drive.

Conclusion

I sincerely hope that Spartan opens up your world of

computing as nui. has it has forme. An Amiga wiiha hard drive
is so much more powerful and versatile, that it's like using a
completely new machine.

rhe etched and drilled circuit board and the hard to find

AM5380 are available from (he author. The prices are as follows:

Etched and Drilled Circuit Board 520.00

AM5380 SCSI Controller $15.00

Add SI.50 shipping for each order. Write for quantih
discounts on orders ol rh e or more. Send check or money order
to:Harker Electronics, 255 Valley N.W.,Grand Rapids,Ml 49504

I am unable to answer questions about Spartan by phone,

but can be contacted bv mail or via GFnie P. Harker, or
CompuServe 71546,1665.

AC'S TECH"'

CAD

APPLICATIONDESIGN—PART 3

OBJECT-ORIENTEDCAD BVFORHSTW ARNOl

Introduction

C* + . SmallTalk, Eifel, Flavors, objects, class,--.

BOOPS1...OOPS! Nowadays, just about every software maga-
zine you pick up has a reference to at least one of these program-
ming languages or terms. It seems as though programmers .ill

over the world havejumpedon thebandwagon ofobject-oriented

programming and are busilv creating objects. Since we don't

want to be left behind eating technological dust, we're also going

to jump on board! We are going to develop an architecture for

implementing geometric objects as true object-oriented objects.

and de\ ,]op several "classes" ol objects lor our mini-CAD pro
gram—and without an object-oriented language, just plain old
\\s| t and Mum- programming ami software packaging tricks!

But first, we need to take one more look at geometric transforms,

and then see how to interactively create new graphical objects

using theevent-dm en programming met hodswe developed last

time {AC's Ttch, Vol 1.3).

Geometric Transforms Revisited

In Part 1 of this series, we discussed the geometric trans-

forms Used to translate (move), rotate, and scale (resize) geomet-

ric objects modeled with vectors, which are just point coordi-

nates Translations are the simplest transforms: we simply add a

vector (x,y coordinate pair) to all the coordinates defining a

model object. Scaling and rotation transformations arc more
complicated, since both of these transformations require "refer-

ence points \\ hen an object is scaled, all the coordinates in the

object either mineaway Irom the reference point or move toward
the point, and when an object is rotated, all its coordinates move
in a circle around the reference point. To correctly rotate or scale

an object, we first translate the object's coordinates so the\ are

relative to the reference point, rotate or scale the object, then

translate it hack to its original location.

Howdowe choosea scale or rotation reference point? One
was is to have the CAD user make the decision by picking a

reference point Another way is to use the initial "pick point" as

the reference point, and still another way is to use ^m arbitrary

point. This is the technique we used in Part 2of this scries. Objects

were rota ted and scaled using the centers of theirbounding boxes
as the transform reference points. We will again use an arbitrary

reference point to transform the objects in our mini-CAD pro-

gram. However, instead of always using the center of an object's

bounding box, the reference point will depend on the transform

being applied. For rotations, the reference pointwill be the center

ol the object's bounding box; and for scaling transforms, the

reference point will be the corner ol the bounding box which is

diagonally opposite the corner closest to the pick point on the

object.

Another common transform provided in most CAD sys-

tems is "flipping" objects. In this version of our mini-CAD
program, we will add a "flip" menu item to our "Action" menu.
Objects are flipped by interchanging their tops with their bot-

toms, or by interchanging their right- and left-hand sides ,\s an

example, suppose we have a triangle whose coordinates .ire:

Figure l shows how this triangle will look after being

flipped horizontallyaround the point (0^))and verticallyaround
the point (5,3). The transform to flip an object is just a scaling

transform with negative scale values. Since objects are flipped

with scaling transforms, a flip reference point is needed. In our

mini-CADprogram.wewilluscthepickpointontheobjectasits

flip reference point. The scale matrix to flip our example triangle

horizontally around the point (0,0) is:

-1.0

0.0 .

0.0 0.0

And to flip it vertically around the point (5,3), the overall

transform matrix is formed by the following sequence of matrix

multiplications (in our program, we call our transform library

matrix procedures to i\o this work):

Translate to
original location

Scale Translate to flip
reference point

...

1.0

1

-

.-

As Figure 1 shows, after an object is flipped, it will not be in

its original location, unless it is flipped around its center. Some
CAD systems automatically move flipped objects back to their

original locations.

New Program Commands

A CAD program which can transform objects is not very
useful unless it can also create objects, so we are going to add
object creation procedures to our program. The new procedures

will enable us to interactively add rectangular shapes, polylines,

and polygons to our model world. We'll also add procedures to

delete objects, to view and modify an object's values using a

Vol. 2, Num. 1 '1991

Figure One Flipping Objects

Y Axis
Tilsngl* (UpfHHl vertically

Figure Two Linking Objects and Procedures

Object Structure

C1«M •:..-'

Claaa Structure
atatlcSupc;

Seal locate

fr l BBtValUfll

—*V g*tv*lu«U

procaduraa

daal locat at

:

•i-i.v .-

extant ft

update
i

|

diapleyn

CUtBflt I I

"Show/Edit" requester, to flip objects, and to move the indi-

vidual points in a line or polygon. The following paragraphs
describe the program commands associated with these proce-
dures and the user actions for executing them.

Objects are added lo a drawing window by first picking an
"Insert" menu item, followed by a menu subitem for the type of
object to insert. The menu item-subitem choices are "Insert-

Shape," "Insert-Line,'' and "Insert-Polygon." Shapes are rect-

angles, lines are a series of two or more points connected by line

segments, and polygons are lines whose first and last points
coincide. Thus, polygons are just closed figures constructed with
points and line segments. After the "Insert" menu pick is com-
plete, the object is added by picking its starting coordinates,
dragging the cursor to locate another set of coordinates, and then
"clicking" the select button. For shapes, the two sets of coordi-
nates define two of the rectangle's corners, and the shape insert

action is complete. For lines and polygons, the coordinates define
the first line segment. To continue adding points to lines and
polygons, one drags to another location and presses the select

button to add the new point. The line and polygon insert action
is completedby "double-clicking" theselect button at the location

desired for the last point. If the object being inserted is a polygon,
theprogram will automatically add a line segment to connect the
first point to the last point.

Objects are deleted by picking a "Delete" menu item, and
then picking the object to delete. The picked object is deleted and
erased as soon as it is selected. "Flipping" objects is performed in

the same way. The "Flip" menu item and one of its subitems is

selected, then the object to be flipped is picked. There are two
"Flip" menu subitems: "Horizontal" and "Vertical." As soon as
the object to be flipped is picked, it is erased, flipped around the
pick point, and redisplayed.

The individual points in a line or polygon are moved bv
selecting the "Move" menu item, then selecting a point and
dragging it to a new location. The command to move points isan
implicit command: either the entire lineor polygon, or just oneof
its points will be moved, based on what part of the object is

selected. If the cursor is close to a point (within three pixels) when
the select button is pressed, only the point is moved. Otherwise,
the entire object is moved.

An object's locationand size valuescan be viewed or edited
by picking the "Show/Edit" menu item, then picking the object.

A "Show/Edit" requesterpops up in the drawing window when
the object is picked. The requester contains labels and string

gadgets which show the object's current position (minx.minv)
and size (width,height>. The selected object's values arechanged
by typing the new values into the labeled string gadgets. Chang-
ing the x and y values will move the object to a new position, and
changing the width or height values will resize the object. Objects

can be flipped by entering negative width or height values. The
requester alsocontains"Modify"and "Cancel" pushbuttons. The
requester ispoppeddown by picking either of these pushbuttons.
If the "Modify" pushbutton is picked, the selected object's values
are updated and it is redisplayed. Otherwise, the object is just

unhighlighted.

Each of these new program actions is implemented with
event handler procedures and event chaining. Let's briefly re-

view how event handlers and event-specific data are attached to
Intuition's input objects (menus, gadgets,etc)and used to process
input events. Recall that a pointer to an event handler procedure
and a pointer to the data needed by the handler is placed into a
structure typedef'ed "intuiExtensionj". A pointer to this struc-

ture is then attached toan Intuition input object. If the input object

is a gadget or window, the intuiExtensionj structure pointer is

placed in the "UserData" member of the gadget or window
structure. Since Menultem structures do not have a UserData
member where we can place our intuiExtensionj structure
pointer, we define our own menu item structure which includes
both Intuition's Menultem structureand our extension structure.
Theextended menu item structure is typedef'ed "myMenuItemJ."
When an input event is received in "handlelnputf)," the
intuiExtensionj structure pointer is retrieved from the input
object,and the event handler is called using the function pointer.

The event handlers either directly perform an action, such as
closing a window, or place information in the program's state

vector for use by another event handler. The state vector in our
program is a structure called "world."

AC'S TECH™

Let's look at Ihe new program commands, the event han-

dlers for each, and the data sent to the handlers. We'll then see

how the handlers and data are used to implement the new-

commands. Table 1 lists thecommands, the handlers responsible

for the commands, and the data sent to the handlers.

Table One New Program Commands

Command Event EverrtHandter Handter Data

Insert-Shape MENUPICK miSetAction msShapeData

Insert-Une MENUPICK mSetAction insLineData

Insert-Polygon

Delete

MENUPICK
MENUPICK

mSe(Action

miSelAction

miSe(Action

insPolyOata

deleteOata

Flip-Honzontal MENUPICK HipXData

Flip-Vertical MENUPICK miSetAction IlipVData

Show/EoM MENUPICK miSetAction showEditOata

Modify GAOGETUP updateVaJues

canceiRequester

seRequester

Cancel GADGETUP seRequester

The last two commands in Table 1 are the "Show/Edit"

requester commands which update an object after its values .in-

modified, or cancel an edit action. The interlace objects for these

two commands are pushbuttons in the "Show/Edit" requester.

The data sent to the event handlers for both of these commands
are pointers to the requester containing the pushbuttons. The rest

of the commands in Table 1 are menu commands. The data sent

to miSelAction() for each of the commands are instances of a

structure typedef'ed "miData_t." This structure contains a func-

tion pointer to an "action" function, an action modifier, and a

pointer to whatever data the action function needs to do its job,

Table 2 shows the miDataJ structure members for each ot the

new menu commands.

Table Two

Structure Name

New Menu Command Handler Data Elements
[

Action Procedure Modifier Action Data

insShapeDala

insLineData

dragAndinsert

dragAndinsert

N : M
None

shapeClass

HneOass

pdyClass

None

insPolyOata dragAndinsert None

NonedeleteOata pickAndDelete

showEditOala picKAndEdit None None

IlipXDaia pickAndFbp FUPX None

NonetlipYData pickAndFl*) FLIPY

The action data for the first three structures are pointers to

other structures. We will discuss these three structures in more
detail below. They are used in "dragAndlnsert()" tocreate shape,

line, or polygon objects. The modifiers stored with the flip data

are used in "pickAndFlipf)" to determine which direction to flip

an object.

Program File Qrganiytiion

Since our mini-CAD program now has quite .< bit of code,

the source code has been split up and placed in several files, and
the data structuresand procedures in Table's 1 and 2are no longer

in a single file. The following is a complete list of all Ihe program
files and brief descriptions of their contents

Program source code and include files

globalDefs h global structure definitions and declarations

•eHandiers.h declaration of the event handlers and action procedures

defined m tstObjectc

tstOOjectc mam program, event handlers, action procedures, and intu-

itwn-reiated procedures

menu c menu definitions and menu procedures

menu h declaration of menu array, menu action modifiers, and menu
procedure declarations

handlelnput c

handlelnputh

delmes handlelnput() and handleDragf.

)

declarations tor handielnputj) and handleDragf

)

Transform source code and include files

transform c

transform,h

2d transform and matnx procedures

declarations and macros lor transform and matrix procedures

Shape object source code and include files |

shape

e

shape class and object interlace procedures

snape.h declarations for shape class interlace procedures

shapeClass c

shapeOassP h

shapeClass h

shapeUtilx

implementation He for shape class and shape objects

private include fite to* shape class,

public include file tor shape class

geometric utility procedure definitions shape

Ul.lh declarations for geometric procedures.

Line object source code and include files

linec

bne.h

line class and object interface procedures

declarations (or hne class interface procedures.

iineCiassc line class and line object implementation file

kneOassPh
iineClass.h

private include Me (or line class,

public include file for line class

Polygon object source code and include files

poh/Ciassc

potyOassP.h

polygon class and object implementation die

private include We (or polygon class.

polyClassh public include file for polygon class

Make/Link files

tstObjecl make

Object mk

makefile lor comprtng the executable program, tstObject.tsl

fcnk file (or Imkmg object modules

Implementing ihe Sew Program Commands
Now thai we know what the event handlers for our new

commands are, know when' thev are located, and know how to

interactively use thecommands, let's look at how thecommands
are implemented. All Intuition eventsare received in handlelnput!

). When an even) is received, hand!elnput() retrieves the pointer

to the intuiE*tension_t structure stored in the input object's

Structure. The function whose pointer is in the intuiExtension_t

structure is then called. For all our new menu commands,

Vol. 2, Num. 1 01991

miSetAction() is the procedure called by handlelnpull).

MiSelAction() is simple: it places the data sent to it into the

program state vector(named "world")and returns. MiSet Action!
Jsets the "action", "modifier",and "data"membersof the "world"
structure equal to the corresponding values in the miData t

structure pointer sent to it. If the next event received by
handlclnpul*) is a MOUSEBUTTONS event, windowEvent() is

called to take care of it. For select button events. Window Event*

) calculates the world coordinates corresponding to the window
coordinates where the button was pressed. It then stores both the

world and window coordinates in the state vector. Finally, if the

action member of the state vector contains a valid action proce-

dure pointer, the action procedure is called. Our new action

proceduresaredragAndlnsert(),pickAndDeleteO,pickAndEdit(

), and pickAndFlip*

)

DragAnd Insert*) is responsible for creating new objects. It

retrieves the "class" structure pointer from the state vector and
calls createShapef), which creates new objects by allocating and
initializing memory' for them. After an object iscreated, insert Drag)

) is called. InsertDragf) takes care of the drag interaction for

establishing initial locations and sizes for new objects. The new
objects are then added to the list of world objects and displayed.
InsertShapc* > adds objects to the list of world objects, and
displayShapct) draws them.

The action procedure for deleting i >hje* NispukAndDcIetel

). It calls findObjectf) to see if an object is located at the

coordinates where the select button was pressed. If an object is

found, it is erased, removed from the list of world objects, and
deleted. EraseShapef) erases any object, removeShapef

) takes

care of removing them from the list of objects, and deleteShapei

I frees memory allocated for objects.

The action procedure which pops up the "Show/Edit"
requester is pickAndEdil*). This procedure determines which
object was picked, highlights it, and then queries the object to

determine its current location and size values. The position and
size values are placed in the requester's string gadgets, and the

requester is popped up. The pointer to the picked object is saved
in the state vector so the action procedures which pop down the

requester can tell which object was selected. This is all that

pickAndEdit() needs to do, so it returns. While the requester
>
s

displayed, the valuesshown in the requester's string gadgets can
be edited. The "Show/Edit" requester is popped down when its

"Modify" or "Cancel" pushbutton is picked. When the "Modify"
pushbutton is selected, its action procedure, updateValues*), is

called by handlelnputf). This action procedure reads the edited

values from the requester's string gadgets, pops down the re-

quester, erases the selected object, and updates it with the new
values. Cancel Requester!) is the action procedure called when
the requester's "Cancel" pushbutton is selected. All it does is pop
down the requester and unhighlight the selected object.

An object's data values are obtained by calling
getShapeValues(>, and they are updated by calling
setShapeValues(>. GetShapeValues*) iscalled from pickAndEdit*

), and setShapeValuesf,) is called from updateValues(). Each of
these procedures is sent an array of name-value pairs. "Name" is

a data element identifier, and "value" is a pointer to a variable

containing a value. GetShapeValues* > returns the object's value
corresponding to "name" in the value pointer. SetShapeValues*

) places the pointed-to value into the object's data element iden-

tified by "name." Querying and updating objects without know*

AC'S TECH'"

ing anything about them is a tnckv problem. We'll take a look at

the technique used by getShapeValuesOandselShapeValues*) to

solve this problem a little later.

PickAndFlip*) flips objects horizontally or vertically IttirM

finds the picked object, then examines the act ion modifier (FL1PX
or FUI'Y) stored in the state vector to determine which wav to flip

the Object If the object is being flipped horizontally, the (x,y) scale-

values are set to -1.0 and 1.0, and if it is being flipped vertically.

the *x,y) scale values are set to 1.0 and -1.0. PickAndFlip*) then

erases the object and calls resi/eShape*), sending it the "flip"

reference point (pick point) coordinatesand the flip scale values,

R« M/eShape() takes care of scaling objects. After resizeShapc*

)

returns, the selected object is redisplayed, and pickAndFlip() is

done.

Moving the individual points in a line or polygon is a
common CAD operation. Points are moved the same way entire

objects arc moved: the point to be moved is selected, then
dragged to a new location. DragAndMove(), the move action

procedure we developed last time, has been enhanced to move
points belonging to a line or polygon. After dragAndMove*

)

finds a selected object, it calls tmdPoint*). It the --elected object

does not contain points which can be moved (shapes), find Point*

) returns a NULL pointer 1 lowever. if the selected object is a line

or polygon, the pick coordinates are used to determine if the pick
point is within a tolerance distance *3 pixels) of one of the line's

or polygon's points. If so, a pointer to the point is returned. If

findPoint*) returns a non-NULL pointer, dragAnd Movei. Kails

dragPoinK) and movePoint*) to move the point. Otherwise.
movcDrag*) and moveShapef) are called to move the selected

object

Take another look at dragAndlnsert* >. It creates shapes,

lines, and polygons without knowing what kinds of objects it is

creating! It you look at the rest of the event handlers and action

procedures in our program, you will see that none of them know
what kinds of objects they are managing! DragAndlnsert*), the
event handlers, and the action procedures in our program illus-

trate two important features of object-oriented programming:
data hiding and polymorphism. The only information our pro-
gram knows about the objects in it ishow tocall their procedures.

It does not even know the actual types of the objects. To our
application code, all objects are of type "object_p", which is an
anonymous type used to hide an object's real type. Notice also
that all objects, whether they are shapes, lines, or polygons, are

displayed by calling displayShapct >. Internally, displayShapct

)

uses a function pointer to call the correct object drawing proce-

dures without knowing what procedure it is calling. If the object

is a shape, the code to draw shapes iscalled, and if it is a polygon,
thepolygondrawing procedure iscalled. "Polymorphism" (many
forms) is the term used to describe this feature of object-oriented

programming. In the remainder ol this article, we will take a

closer look at the concepts and characteristics of object-oriented

programming, and develop an object-oriented "framework" for

implementing geometric objects. Let's get started with "objects"

and "classes."

Objects, Classes and Abstract Data Types

The "object" and "class" concepts in object-oriented pro-

gramming have the same meaning as they do in everyday lan-

guage Things (objects) which are similar are grouped into cat-

egories called classes. Similar classes, in turn, are grouped into

categories of superclasses and subclasses. Mammals, for ex-

ample, area subclass of a class of living creatures called animals.

Canines are a subclass of mammals. Subclass objects are similar

to theirsuperclassobjects, butarealsodifferentinsomerecogniz-
ableway. Software objects are grouped into software classes the

.same way thai real objects are grouped into classes: all software

objects which share thesame data definition and the same Func-

tionality belong to the same software class. I he individual soft-

ware objects which belong to a dass are called "instances ol the

class." or "class instant

Soilware classes are more thanjustconceptual groupings ol

similar obje< ire programmer-defined data t\ pes Ihe\

consist of definitions of their instance objects' data structures,

code implementing their objects' behavior, and a mechanism for

linking instance objects to theircode. InC++, the "class" construct

is a feature ot the language. It provides support tor programmer-
defined data types, which are managed automatically in almost

thesameway built-in data typessuch as Integersand doublesare
managed. Since we are not using C++, we have to create our

classes and manage them ourselves. The basic programming
construct for creating programmer-define.! data types in C ts

"data abstraction."

An abstract data tvpe consists of a data definition, thecode
for managing and manipulating the type (data definition), and a
description of how to use the type. The transform structure and
code we created in Part 1 is an example ot an abstract data type.

Wecreated a data structure, typedef'ed it as "iransform2_t,"and

wrote all the code needed for using transfbrm2_t structures. We
created a programmer-defined data t\ pfi, I i |s '' t'ansform2_t's,

we do not need to know anything about their internal data
structure or how their code works. All we need to know is which
procedures we can use with them, and how local! the procedures

We implement and paek.ige any abstract data type the same way
we did our transform2_t data type: all the code for the data type

is placed into a single source code (xxx.c) file, and the structure

and procedure declarations programs need to use the data type

are placed in an include (xxx.h) file. This is the way we packaged
our transform data type. The structure definitions and code for

object-oriented objects are packaged in a similar way. Classes

consist ot the "package" of code, structure definitions, and struc-

ture declarations lor a single type ol object A class is the imple-

mentation of .tn abstract Jala type, and objects which belong to

the class are "variables™ of the data type

Data Hiding

The only problem with abstract data types is that the

implementation details (data structures and code) for the types

are usually visible to programs using them. Since the implemen-
tation details .ire visible, the data elements for abstract data types

can be directly accessed and modified. This is .1 temptation most
programmers easily succumb to, usually under the banner of

"efficiency." To remove this temptation, the data structures and
code for object-oriented objects are hidden from applications

which use them.

To hide class implementation details, the prgram places the

structureand proceduredeclarations fora class'sobjects into two

include files. One include file is "public" and contains declara-

tions needed by applications. The other include file is 'private'

and contains declarations needed by theclass. As an example, the

three tiles containing the implementation of shapeClass are

shapeClass.c, the source code file, shapeClassP.h, the private

include file, and shapeClass. h. the public include file. For our
object-oriented implementation, brand new classes need two
additional files (me is a source code file containing application-

class "interface" code, and the other is an include file for pro-

grams using the interface code. Shape.c and shape.h arc the two
interface files for shapeClass. All the include files for our three

object classes (shapeClass, UneClass, and polyClass) arc in List-

ings 1 through 8.

In our mini-CAD program, all objects are visible only as an
opaque pointer type, "object_p" (actually a "void *"). The real

Structure definitions are contained in the private include files.

the private files are included in our program (cheating!),

we cannot access or modify the data elements for our objects.

lurlher.all the internal procedures for each of ourobjecttypesare

declared "static". Since static procedures are not visible outside

their file, we can not directly call the procedures which imple-

ment the functionality for our objects. This brings up a question:

If both the data and the code for objects are hidden, how can the

objects even be used?

Binding Data to Code with Pointers

1 mentioned above that classes contain a mechanism for

linking the data for their objects to theircode. This mechanism is

a structure containing function pointers which point to the code
for the class's objects. The structure containing the function

pointers is called a "class structure." It is declared in the private

includefileforaclassand initialized in the class's source code file.

A pointer to theclass structure ismade available to code using the

class's objects as an opaque type in the class's public include file.

I he opaque class structure pointers in our program are named
•*," "

I meClass," and "polyClass." Theiropaque type is

"class p 1 he class structure pointers are used by our program

when it calls createShape() to create objects.

The Mrs! structure member of our object structure is a

pointer to its class structure. The class structure pointer member
ol an object is initialized when the object is created. By including

the class structure pointer as part of an object's data, objects are

indirectly linked to their code. Figure 2 shows how object struc-

tures, class structures, and object procedures are all linked to-

gether with structureand function pointers. Since the data struc-

ture foranobject containsa pointer to its class structure,which in

turn contains pointers to the class's procedures, an object's proce-
dures ,,in be indirectly called using its data structure. Here is a

code fragment showing how the "display" procedure for shape
objects is called:

• .ip« object struct poire.

data, '• shape class struct pointi

::;ect->class;

.play) lob iw) ; /•

Because an object's procedures (operations) can be called

through tin' class pointer which is part of the object, object-

oriented Objects are "active" data, and are sometimes referred to

as "actors

Vol.2, Num. 1 ©1991

It isapparent from theabovecode fragment thai tocorreelly

manage all the structure and (unction pointers associated with
ob|i

. N. knowledge of at least part of the implementation details

of objects and classes is needed somewhere this knowledge
consists of several pieces of information. Some code needs to

know that object structures contain class pointers and that class

structures contain function pointers. In addition, knowledge of

which function pointers are contained in a particular class struc-

ture, and what their linkage \ ariables are, is also needed. We do
not want this kind of knowledgeembedded in ourCAD applica-

tion code, since it would have to perform type checkingand type

casting to correctly use our objects. In fact, as mentioned above,

this kind of knowledge is not even available to our application
code

When a new class is created, "interface" code for using the

class and its objects is also created. The interface code is a set of

procedures which provide access to a class's objects and their

functionality. The interface code for a class is referred to as its

"message interface" by object-oriented programmers,and calling

one of the interface procedures is referred to as "sending a

message"toanobjeet Most, lav. interface proceduresdo nomore
than the code fragment shown above: they just retrieve the class

structure pointer from an object, then retrieve a function pointer

from the class structure pointer and call the procedure.

The interface procedures for our objects are in the files

shape.c and line.c. Shape.c contains interface procedures for

using any shape object, and line.c contains procedures for using

line and polygon objects. The code in shape.c knows that shape
objects contain pointers to a shapeCIass structure, knows which
function pointersare in the shapeCIass structure,and knowshow
to call the shape object procedures through the function pointers.

The code in line.c contains the same informal ion about line object

structures and the lineClass structure. The procedures in shape.c

and line.c are the ones called by the "action" procedures which
implement all of our CAD functionality.

The interface procedures for a class do more than simply
provide access to the class's objects. One important function (hey

perform is shielding application-specific program code from
changes in data structuresand code. The way classes and objects

are defined and implemented can be changed without affecting

the way they are used and accessed in application programs, as
long as the way the interface procedures are called does not

change. In addition, when combined with structure overloading,

the interface procedures provide an important feature of object-
oriented programming known as "polymorphism."

Structure Overloading. Subclasses, and Polymorphism

Ifwe analyze all the different types of operations needed in

CAD programs, we see that mostCADoperations arecommon to

all objects, whether they are circles, lines text strings, or Others,

All CAD objects need display, erase, highlight, rotate, and scale

operations, among others. However,some object types also need

to perform operations which are not performed by other objects.

Lines and polygons need operations for manipulating their indi-

vidual points, such as an operation for moving the points. Circles

and text objects do not need these operations In addition to a

common set of operations, graphical objects also have a consider-

able number of common data elements In our mini-CAD pr»»-

gram, the data structures for all our objects contain pointers to

their class structures, linked list "next" pointers, and bounding
box coordinates. If we group the members of our structures so

that those members which arecommon to different objectsare in

the same positions in their structures, we can use "structure

Overloading'' with our classesand objects. Structure overloading
is a technique for defining new structures by adding structure

members to the end of existing structures. The technique allows

code written for existing structures to be used for the new
structures. This technique is extensively used in object-oriented

programming, and is also widely used in the Amiga system

software (message and library structures, for example).

I or our graphical objects and classes, the data elements
common to all graphical objects are placed in the structure for

shape objects, .im\ the function pointers for functionscommon to

all graphical objects are placed in the.:lass structure for shapeCIass.

1 hesestructures are defined in shapeClassP.h (Listing 1). Notice
that macrosare used to define the structure members. Macrosare
used because they reduce the effort required to overload the

Structures and change structure definitions. Now take a look at

the class and object structure definitions for lineClass and
lineObject in lineClassP.h (Listing 2). The structure definition for

lineClass is almost identical to the structure definition for

shapeCIass I he only difference is that lineClass extends (over-

loads) shapeCIass, adding threenew function pointers. Similarly,

thestriu lure definition for lineObject extends shapeObject'sstruc-

ture by adding a "points" pointer to shapeObject. Finally, take a
look at the structure definitions for polyClass and polyObject in

polyClassP.h (Listing 3). Other than containing empty macro
definitions .is placeholders, these structures are identical to the

lineClass and lineObject structures. These are all examples of

overloaded structures. Let's lineup our structure definitions side

by side and compare their members. Table 3 compares our class

structures and Table 4 compares our object structures.

Table Three Class Structure Members

shapeCIass, t meCiass t

CLASS^PART CLASS PART
SHAPEC_PART SHAPEC^PART

LINEC.PART

polyClassJ

CLASS.PART
SHAPEC.PART
LINEC.PART

POLYCPART

Table Four Object Structure Members

shapeObjecM

OBJECT_PART
SHAPE.PART

lineObjecLt

OBJECT,PART
SHAPE.PART
LINE PART

poryObject_t

OBJECT_PART
SHAPE.PART
LINE PART
POLY_PART

Structure overloading can significantly reduce code vol-

ume and eliminate code duplication. We can see why this is true

from our class and object definitions. Since the definitions of

lineClass and polyClass include the definition of shapeCIass, all

thecode whichi
"knows" about shapeCIasscan be used tomanage

>

AC'S TECH™

and manipulate the shapeClass part of the lineClass and polyClass
structures. Inthesame way, thecode which knowsabou t lineClass

can be used for the lineClass part of the polyClass structure. These
statements are also true for our overloaded object structures. In

our mini-CAD program, shape.c contains the code which is used

for all our overloaded class and object structures, and line.c

contains the code for the overloaded lineand polygon classesand
objects. As far as the procedures in shape.c are concerned, all class

structures are shapeClass_t's and all object structures arc

shapeObjecM's. The procedures in line.c view all the class and
object structures sent to them as lineClass_t's and HneObject_t's.

Let's return to our "display" example and see what hap-

pens when objectsaredisplayed using function pointers from our
overloaded structures. Suppose we have created and added a

shape object and a line object to our model world, and are ready

to redisplay all (bothl)of our objects. Todo this,we call "draw All(

)", our application procedurewhich redraws all our objects. Here
is the code from draw AII() which redisplays the objects:

obj * world. objects;

whilst obj I

t

I voidldisplayShape (obj, window)

;

obj nextShape(obj)

;

DisplayShapef > and nextShape() are defined in shape.c,

and here are Iheir definitions:

int displayShapef object_p object.window_p window
|

1

class_p class * getc;- <
'

< -.(object);

shapeClaSB_p shapeC = getShapeClasslclass)

;

object's drawing procedure. For shape objects, the procedure
which draws shapes as rectangles is called, and for line objects,

the procedure which draws polylines and polygons is called.

NextShapef) works in a similar manner. It casts whatever
object pointer is sent to it to a shapeObject pointer, and simplv

returns the 'next' structure member stored in ever)' shapeObject

structure. Since lineObject and polyObject structures overload

shapeObject structures, nextShape() can access these structures

in exactly the same way it accesses shapeObject structures.

As tin--!' iwu examples show, the pTOCCdurea which ,ir.

used for shape objects can also be used for line objects and poly

objects, since the first part of their structure definitions are

identical to the structure definition for shape objects. This means
that either line objects or poly objects can be used wherever shape
objects can be used. However, the opposite is not true; that is,

shape objects can not be used wherever line objects are used, nor

can line objects be used wherever poly objects are used. Imagine

what would happen if the procedures in line.c cast the shapeclass

structure pointer to a line class structure pointer and tried to call

one of the procedures line class adds to shape class! Most likely,

the software gremlin which lives in all code would probablv

wake up and go to work! The generic interface procedures
written for an extended object structure prevent this from hap-

pening by looking at an object's class structure to determine

whether it contains the necessary extensions before attempting to

access them. This is similar to type checking. The procedure

isClasslnstancef) in shape.c compares an object's class structure

pointer with an input structure pointer to see if they match. Here
isa code fragment showing how the generic procedure findPoint(

Jin line.c calls isClasslnstancef) to verify the object sent to it is a

line object or an objectwhich extends line objects before it calls the

findl'omt procedure line class adds to the shape class structure

definition:

it { I object n ! shapeC n : shapeC->display
return 1;

return r lshapeC->displayl 1 t object. window!

;

• make sure the object is either a lineObject or
an object which is an instance of one o:

* class's subclasses.

object_p nextShapef object_p object i

i

sh*peObject_p shape = tshapeObject_p)object;

if I : object)

return NULL;

return lobject_p) shape->next

;

1

The first thing displayShape() does is retrieve the class

pointer from whatever object is sent to it (getObjectClass and
getShapeClass are macros defined in shapeClassP.h to retrieve

and cast class pointers). If the object is a shape object, the class

pointer points to shapeClass. If it is a line object, the class pointer

points to lineClass, but displayShape() does not know this. Since

the lineClass structure overloads the shapeClass structure, it can

be safely cast to the type. "shapeClass_p", and itsmemberscan be
accessed and used as if it really were a shapeClass_p structure

pointer. After making sure none of the pointers are NULL,
displayShape() uses the display function pointer to call the

if i : isciassiM-

return NULL:

ect. lineClass) |

if I llneC->f indPoint >

return (•(lineC-»f indPoint I t (object. px.py.ep3)

;

And here is the definition of isClassInstancc():

int isClasslnstancef objcct_p object ,class_p class)

I

class_p objClass * getObjcctClasslobject)

;

shapeClass_p shapeC getShapeCla'ss (objClass)

while (shapeC I

I

class_p)shapeC > class I

retur

shapeC = getShapeClasslshapeC- 'superclass)

;

return 0;

Vol. 2. Num. 1 <m991

As we will six- shortly, each class structure contains .1

pointer to the structure it overloads. The pointer is the structure

member named "superclass" isClasslnstancel) first retrieves

the class structure pointer from the input object. Inside the

"while" loop, the retrieved pointer is compared with the input

dasa pointer, .ind if they match. isC Iass Instance)) returns 1 to

indicate the class pointers match. Otherwise, the pointers to the

overloaded class structures are retrieved trom each class struc-

ture and compared with the input class pointer. The loop contin-

ues until the root class structure (shapeClass) has been reached

and compared. When the code in line.c calls isClass!nstance()

and sends it a line-Object, thecomparison succeeds immediately.

If the object is a polyObject, the first comparison fails, since

polyClass does not match lineClass. The second comparison
Succeeds, since the superclass pointer retrieved from the polv

class structure points to the line class structure. However, if the

object is a shape object, the comparison will fail, since the shape-

class structure does not overload the line class structure.

When our application code calls the interface procedures in

shapex and line.c, it does not know what kind of object it is

sending to the procedures, and tin* called procedures do not
know the "real" type of object sent to them. Nevertheless, the

correct procedures for our different classes of objects are called.

In object-oriented terminology, this typeol functionality is called

polymorphism, and it is one of object-oriented programming's
more powerful features. Polymorphism allows us toremove type
checking from our code—no more massive switch statements to

decidewhich procedures tocall, and nomore special casecode for

different objects—we just call a procedure and the "right actions"

are performed! What is almost magical about polymorphism is

that we can add brand new objects and classes—created by
overloading the shape class and shape object structures—to our
program, and our existing code will automatically work without
any changes or additions! Think about the significance of these

statements

From a conceptual viewpoint, lineClass and lineObject are

spedalizedversK)!isotshapeC"lassandshapeObject*ndpolyClass

and polyObuvtare specialized versions of lineClassand lineObject.

Our overloaded structures form a hierarchy of class structures,

together with their instance objects' structures. ShapeClass is a
"superclass" for both lineClass and polyClass. and lineClass is a
superclass for polyClass. Another way to describe the same
hierarchical class relationships is by saying polyClass is a "sub-

i lass of both lineClass and shapeClass, and lineClass is a sub-

class of shapeClass. Subclasses specialize existing classes by
adding new data or functionality, by modifying existing func-

tionality, or both. With a few pointers and a couple of program-
ming techniques, we can use structure overloading to implement
"true" subclasses and "method inheritance," another powerful

feature of object-oriented programming.

remove this restriction. Method inheritance enables subclasses to

use procedures defined by their superclasses without knowing
the name of the procedures or where they are defined.

You may have noticed in ourCAD program that all objects

are moved, resized, and rotated in exactly the same way. There is

a good reason for this: all our classes use the same drag proce-

dures for nun -nig. sizing, and rotating objects. The procedures are

moveDragf), sizeDragf), and rotateDrag(J, and they are static

procedures defined in shapeClass.c LineClass and polyClass
inherit these procedures from shapeClass.

To implement method inheritance,we either need a way for

subclasses to get function pointers from their superclasses, or we
need a way for superclasses to initialize function pointers for their

subclasses. We will implement method inheritance the second of

these two ways. Four requirements must be fulfilled for this to

work. They are:

1

.

Each class which implements an inheritable method defines a
special "inherit" symbol for the method, and the special

symbol is made visible to subclasses. Subclasses which need
to inherit a method place the special symbol in the function

pointer member corresponding to the procedure to be inher-

ited.

2. Each class needs a setup() method which initializes the

structure members for its class structure and the class struc-

tures for its subclasses.

3. Each class needs to keep a pointer to the class structure of its

superclass so it can call the setup!) method of its superclass.

4. All method inheritance for a classand its superclassesmust be
resolved before any class methods other than setup!) can be
called. This requirement is met by calling a class's setup!)

method the first time one of its objects is created.

Let's look at the polyClass structure to see how it is initial-

ized, then step through code fragments from all three of our
classes toseehow polyClass inheritsmoveDragO from shapeClass
and inherits display) | from lineClass. Notice that almost all of

polyClass's function pointer members are named "inherit... ."

rhese are the names of the "special symbols" defined by
shapeClass and lineClass so the methods they define can be
inherited. They are the names of procedures which do nothing

except return an error code. The "inherit..." procedures are de-
clared in the private include file for a class, and defined in the

class's source code file. Since subclasses include the private

include file of their superclasses, the names of the dummy "in-

herit" procedures are visible to them. Subclasses let their super-

classes know which methods they want to inherit by placing

pointers to thedummy procedures in their class structure. This is

the class structure definition for polvClass:

Inheritance

1 1 w as mentioned above that all the procedures in a class are

defined as static, and thus are not visible outside their definition

file. This would seem to be a major flaw in object systems, since

statu procedures cannot be shared among different classes, even
subclasses of a class which defines a static procedure. However,
object systems use a technique called "method inheritance" to

- stiapeClass_p superCla^

(shapeClass_pU_lineClaas:
polyClass_t .polyClass =

I

(class_p)4_lineCla83, /• superclass
OX. • (lagWord

sizoof (polyObject_u, /• objectSize
/• methods specified by shapeClass
setup,

NULL, • initiflllM

AC'S TECH 1 "

"

Dint.

Method Inheritance is triggered when creaieShape() is

called. Forpolygons, theclassstructure pointer sent tocreateShape

is polyt lass. CreateShapef) casts the class pointer to

"shapeClass p and looks .it the flagWord member to see if the

, lass has been initialized It not, the setupClassI
(procedure for

the class Is called using the function pointer to the class's setup

method. I leie is the code which does this:

;

snap*"

Since tin- class pointer sent to createShape points to

polyClass, createShape() calls polyClass's setup method.

Polyt lass keeps a pointei toitssupereIass(lineCIass),andafteril

completes it-- setupprocessing,calls its superclass's setup method.

sending its class pointer to it I lere is the code from polyClass's

setup!) method

I! 8

•

LineClass defines a display method which draws polylines

and polygons. This is the procedure polyClass wants lo inherit.

IJneClass'ssetup method examines the "display" function pointer

member of the class pointer sent to it. If the display function

pointer points to inheritDisplayl), it is replaced with the pointer

to the displayf) procedure defined by HneC lass. After lineClass's

setup procedure finishes its processing, it calls shapeC lass's

setup procedure:

static int setup! class_p class I

lineClass_p lineC = (lineClass_p)cJdgs;

. .neC->display = = mheritDisplay)

HneC->display s display;

(void) ("(superCIass->setupClass)

)

(class) ;

lineC->rlagWord I. IS.INITIALIZED;

return 0;

ShapeClass also defines a display method which can be

inherited, so it also looks for a function pointer to inheritDisplayl

). However, since the inheritDisplayl) function pointer has

already been replaced by a pointer to lineClass's display method,

shapeClass does not find the inheritDisplay() pointer in the

polyClass structure. ShapeClass's setup method looks for func-

tion pointers to all the inherit...!) procedures defined bv
shapeClass, so it finds the pointer to inheritMovedrag{) in the

polyClass structure It then replaces the inheritMoveDrag()

function pointer with the pointer to the movedrag(
)
procedure

defined for shape objects:

• setupt class_p class l

shapeClass_p shapeC ishapeClass_p)class;

.nneritDisplay)

shapeC->di5play = display;

,;

;-
.nhcntHovedrag I

vedrag:

riagWord 1= IS_!'

return Of

When shapeCIass's setup() procedure finishes, all the

inherit...() function pointers in the polyClass structure have been

replaced by procedures defined by either lineCIass or shapeClass.

The way method inheritance works and can be implemented

should be clear from this example. Its significance should also be

apparent: very- little code is required to implement fully-func-

tioning polygon objects, since almost all of their methods are

inherited.

You are probably wonderingwhy such an elaboratescheme
is used to implement inheritance. Why not just make class proce-

dures visible to their subclasses, and let the subclasses explicitly

initialize their own function pointers? The main reason we have

implemented inheritance as illustrated is that subclasses can

automatically inherit procedures without knowingwhich of their

superclasses defines the inherited procedures. This technique

Vol. 2. Num. 1 ©1991

enables us to add new procedures to a class without having to

change its subclasss's class structures. For example, suppose we
define a moveDrag(

) procedure (or lineClass which will draw
polylines as they are being dragged around, instead o(using
shapeClass's moveDragf) procedure which draws a box. The
inheritance schemewe have implemented will result in polyClass.

and also any future subclasses of lineClass, automatically inher-

iting the new moveDragf) procedure. Automatic inheritance is

one of the reasons object-oriented systems are ideal for rapid

prototyping: new objectclassescanbeimplemented quickly with
very little new code. Later, when the new classes are working
correctly, methods which are more appropriate for the new
objects can be written to replace the methods which were inher-

ited during prototyping.

Object systems employ several other techniques which
enable subclasses to use methods defined in their superclasses.

One technique is "method chaining," and another technique is

"superclass dispatching." Superclass dispatching occurs when a

method in a subclass calls a corresponding method in its super-

class. The example just discussed uses superclass dispatching:

the setup! > procedure in each class calls the setup{) procedure of

its superclass. Method chaining is more complex, and is best

explained with an example. Method chaining is generally used
when objects are created and destroyed.

Creating and Destroying Objects

All our graphical objects are dynamically created at run-

time in dragAndlnsert(). which calls createShape{) to actually

create an objectand return its pointer. Several steps have to occur

when objects are created: first, memory for the object needs to be

allocated; next, the object has to be "bound" to its class structure;

finally, the object has to be initialized. Allocating memory for an
object and binding it to its class structure is easy. Initializing an
object is a bit tricky. Here is the object creation code from
createShape()and from the static procedure initialize*) in shape.c

which performs these steps:

object_p createShapel class_p class)

I

>ai_p ShapeC » getShapeClass(cla3Sl;
shapeOb)ect_p shape HULL;

re owwry lor the otnec: •/

:.-ect_p)malloc (shapeC- >objectSiie);

shape->class * class;

shape->next = NULL;

hf object •/

:bject_p) shape, class t »

free((void')shape I;

return NULL:

static int initialize* ob)ect_p object. class_p class)

I

class_p super getSuperClassiclassj

;

ais_p shapeC = getShapeClasslclass);

• recursively call self until we get to the root

• class (has no superclass)

V

super I

if i .super))

/* call each class as we return from recursion »/

if t shapec .ze i

return C (shapeC-> initialize) I (object);
return 0:

The only variable sent to createShapet) is a pointer to the

class structure for the object being created. As noted earlier, the

class structure pointer is the menu "action data" for the "insert"

menu item. CreateShape*) casts the class structure pointer to a
shapeClass pointer, allocates memory using the object size infor-

mation stored in the class structure, and binds the new object to

its class structure pointer. CreatcShape() then calls initialize)) to

take care of initializing the rest of the object's data values. The
new object is initialized using method chaining: the initialize) J

methods for the object's class and all its superclasses are called,

from the "root class" (shapeClass) first down to the object's class.

This form of method chaining is called "downward chaining."

and it is used to permit every superclass to initialize the object

structure members they are responsible for. The object's super-

classes are called in superclass to subclass order so that each
subclass can "override" (change) any values initialized by their

superclasses. If a subclass does not need to perform any initializa-

tion other than that done by its superclasses, it does not need to

provide an initialize*) method. Initialize)) uses recursion to

follow superclass pointers until it reaches the root class,

shapeClass. As the recursive calls "unwind," initialize*) calls the

initialize method for each class which has one.

Objects are destroyed in a similar manner, except "upward
chaining" instead ofdownward chaining is used. When upward
chaining is used, class methods are called in subclass to super-

class order. Here is the object destruction procedure from shape.c

showing how upward chaining is used when objects are de-

stroyed:

int dei j 'object)

I

class_p class * getObjectClass! 'object) ,-

shapeClass_p shapeC get ShapeC las

f

* call superclasses in subclass to superclass order
* to perform postdest ruction object cleanup.

while (shapeC

I

it (shapeC->deallocate i

(void) (• (shapeC- >dcal locate)
)
('object)

;

shapeC = getShapeClass(shapeC->superClass)

j

I ree the object

it ('object I

freel (void') 'object t

;

'object NULLi
;. 0;

I

•

AC'S TEC

H

,M

Upward chaining occurs inside the "while" loop in

deleteShape(). The code looks at the deallocate function pointer

in the class structure pointer, and it it is not NULL, calls it. Next,

the pointer to theclass'ssuperclassstructure pointer is retrieved,

and if the superclass has a deallocate method, it is called. The
while loop ends alter the root class (shapeClass) i- reached.

DeleteShapet) then frees the memory allocated for the object

structure.

Why are objects destroyed this way? Why not just free the

memory allocated foranobject? Anyobjecl may contain pointers

to internally-allocated memory, and if so, the internal memory
needs to be (reed before the memory allocated for the object

structure is freed. DeleteShape() does not know what kind of

object is being destroyed, and does not know it it contains

pointers to dynamically-allocated memory. Chaining through all

the deallocate methods for a classand itssuperclassesinsures thai

any class which allocates memory fbi its objectscan also free the

memory before the object memor\ is meed.

Object creation, initialization,and destruction are complex
operations in object-oriented programming systems Many de-

tails have to be taken care of to insure these operations are

performed coin. Uj and completely. Two oilier complex opera

lions are genericallv accessing and modifying an object's data

values.

Accessing and Updating Object Data Values

PickAndEdit() calls getShapeValuesf) to determine data

values for an object so they can be displayed in our program's

"Show/Edit" requester,and updateValues()callssetShapeValucs(

) to update an object's data \ allies alter they are modified. Both

getShapeValuesf) and setShapeValuesf) use a technique whk h

is common in object systems: an ana) ol structures containing

tags "and values is tilled in and sent to a method which queries

or modifies an object's value-- I he "tags" identity data elements

which are to be returned or updated, and the "values" are either

actual values or pointers to variables which hold the actual

values. lags are identtliers which uniquely identify an object's

data elements. They are detined in mam different ways by

differentobject systems; sorneuseactualstrings.sorneusemacro

definitions, and still others use hash functions to generate tags

from data element names. Our program uses a simple technique
HT.itmg tags. Each object structure member is assigned a

unique name in the class responsible for the structure member,
and a pointer to the string which points to the name is detined

The pointer to the string pointer is exported as ,m "atom*' in the

class's public include file, and is used as the data element tag.

There are several advantages to this approach; it is simple; the

compiler and linker will guarantee the tags are unique within a

task; pointers can be directly compared forequality; and finally,

the name can be accessed if needed.

To make using tag-pointer value pairs easy, we define a

structure to hold the pairs, and a macro tor setting up the array

values. The definitions from globalDefs.fi are:

typede! char •atom_p; * • : tag is an "atom*

ier '/

value is bt *ned •/

void iPtrj '• pointer to value variable •/

* '-rg_p;

(tarsi

When we need lo query or modify an object's data values,

we s,'t up an array of argj's, initialize the values, and call

getShapeValuesf I or setShapeValues!) Here is a code fragment

from pickAndtditl > which shows how the arg_t structure array

and pointer variables are declared, how the array is initialized,

and how getShapeVaIues() is called:

arg_t

doubli

long

set up the args array, then call get:

g»tShapcValue6 will plao.-

pointers corresponding (

a.ucs

(void Ig

fipyt;

r. . . ;

• •

GetShapeValuesf) retrieves the object's 'getValues' method
from itsclass structureand calls it to process the arg_t array Here
is the code from shape class's get Values procedure which returns

the class name for shape objects:

\-_om I

strcpy

'

" -Nap«"t:

nuej

There are two weaknesses in using tag-pointer pairs to

access and update data values for objects: first, the tags which a

i lass oi objit ts recognizes must be known; and second, the value

pointers must be the correct data type and data si/e. For example,

toaccess an object's class name, ourmini-CADapplication needs
to know that all objects recogni/e"class\lameAtom"asa tag,and
that the type of value associated with the tag is a character array

which can hold a maximum of 32 characters. The first weakness

is minor, since a class which does not recognize an atom just

prints an error message and ignores it. The second weakness can
have serious side effects (memory corruption) if a value is as-

signed to a data type which has too few bytes to hold the value.

1 he tags tor a class and its subclasses are made known to appli-

Vol. 2. Num. 1 ©1991

cationcode by being declared in theclass's public include file. The
associated data types for the lag value pointers are placed in

comments next to the lags, and applications querying or updat-
ing object data valuesare responsible (ormakingsure the pointed-
to variables are the correct type and size. Here are how the

declarations from shapeClass.h for classNameAtom and
xLocationAtom look:

extern const atom_p classNameAtom; /• char*. 32 bytes •/

extern const atom_p xLocationAtom; /• double /

Finally, here is how classNameAtom is defined in

shapeClass.c

static char •const _classNamc - "className";
const atom_p classNameAtom (ar.orr._pit_className:

Modifying an object's values is more complicated than
accessing its values. The valuesare modified in basically thesame
way they are accessed However, after the values are modified,

the object needs to know which ones were modified so it can
perform any actions required because of the modifications. As an
example, when the width and height values for objects are

changed to negative values, they need to be scaled (to flip them)
and moved back to their original locations. Additionally, sub-

class objects may need to disallow some modifications which
their superclass objects allow. Because of these considerations,

selling an object's values using tag-value pointer pairs is a two-
step process. Modifying the object's values occurs first. After this

is complete, an "update" method for the object is called and sent

Ihe modified object, along with an unmodified copy of it. The
object's updatemethod thencompares its new values with its old
values to determine which values changed. The update method
can disallow changesby setting the modified values back to their

original values, allow some values to change, or allow all values

to change. Based on which values changed, Ihe update method
can perform any additional processing needed to insure the

integrity of the object is maintained. The following code from
setShapeValues(} shows how this two-step process is done

1
crtflt .low copy of the unmodified object

* The copy is used by the class to determine which
' object values were changed.
*/

copy = lobject_p)malloc<shapeC->obJcctSize);

te»cpyHvoid")CDpy, ivoid'>object.shapeC->objectSize)
;

/• set the object values •/

(void! ('(shap* t.args.n);

* send the updated object and the unmodified copy
* to the class so it can validate the modifications

any actions needed to maintain
the integrity of the object

•

.ipeC->update) Mobject.copy, window) .-

free((void'icopy)

;

return ret;

You can look at the setvalues and update methods in both
shapeClass.cand lineClass.c to see how objects are modified and
see the types of actions required when an object's values are

changed.

Other than the procedures for creating and destroying

objects, and for accessing and updating an object's data values,

the rest of the procedures in shape.c, line.c and the three class

modules are relatively easy to understand. In fact, the procedures
in the class modules are basically the same ones presented and
discussed in Part II of this series.

Summary

In Part 1 of this series of articles, I promised that we would
develop a basic CAD program. We have almost achieved that

goal: we developed a library of transform procedures and a set

of procedures and techniques for handling Intuition's input
events in Part 1 and Part 2. In this article, we developed a
framework for implementing geometric models using object-

oriented programming techniques, and saw how to implement
several classes of geometric objects. In my next article,we will see
how new classes of objects are implemented using our object-

oriented framework, and add rectangles, circles, and ellipses to

our mini-CAD application. We will then have a mini-CAD pro-
gram which can be easily extended to include both new objects

and new functionality.

Listing One shapeClassP h

Listing 1. Private include file for shapeClass.

• shapeClassP. h - defines class structure and ob)ect
' structure for shapes.

' The structures defined here are common to all
' geometric classes and objects. New class and object
• structures are created by overloading (extending) the
• shapeClass and shapeObJect structures defined here.
•

" Id Copyright 1991. Forest w. Arnold
• All rights reserved.

«•!

Ilfndef SHAPECLASSP_DEFS
•define SHAPECLASSP_DEFS

•include •globalDefs.tr
•include "shopeClass.h'

class flag values

•define IS_INITIALIZED 1

Shape Class Part - defines the shape class part
of a shapeClass structure. The CLASS_PART
consists of information about the class and its
objects, and a 'setup' procedure which
to complete initializing the class structui
when the first object is created.
The SHAPEC.PART consists of function pointers
to the methods for a class.

AC'S TECH™

define CLASS_PART \

class_p ;;erClass;\
unsigned long UagWord;\
unsigned int objectSize;\
int CsetupClaBS) (class_pi

;

•define SHAPEC.PART \

int • zel(object_p);\
int ('deallocate) lobject_p);\

etvalue) (object_p.arg_p, Int) ;

\

int Cgetvalue) (object _p.arg_p. int) ;\

int ('update) lobject_p.object_p.window_p) ;\

int fdisplayl lobject_p.window_p
int Cerasel (object_p ,window_p
int ("highlight) (object_p.wir.dow_p |;\
int t'unhighlight) (object_p.window_p i;\

int Cinsertdragl tobject_p.window_p);\

int I'movedrag) I object_p.window_p«\
double '.double);\

int ("sizedrag) (object_p,windowj>, double, double,

\

double '.double •);\
int I'rotatedrag) (object_p. window_p. double, double,

\

double ');\

int I 'move) <object_p. double. double) ;\

*o) (object _p, double, double, double. double) j\

int t "rotate) <object_p, double. double, double) ;\

double I'pointToObject I lobject_p. double, double) ;

\

int ('extent) (obJect_p,double '.double ",\

double ".double) i

This is the shape class structure definition.
All classes which are subclasses of shapeciass
will consist of CLASS_PART and SHAPEC_PART as
the first two parts of the class.

typedef struct _shapeC
I

CLASS.PART
SHAPEC_PART

(shapeClass_t.'shapeClass_p:

given an instance of a class_p, these macros will
access the shape class i the shape superclass

•define getShapeClass (class! \

((class) ? IshapeCIassji) (class) : NULL)
•define gctSuperClass (class) \

((class) 3 l (shapcClass_p) (class) I ->superClass : HUI

shapeObject structure definition
All shapeObjects and objects whose class is

a subclass of shapeClass will consist of an
OBJECT_PART and a SHAPE_PART as the first two
parts of the object.

typedef struct .shapeObject

OBJECT_PART
SHAPE_PART

) shapeObject_t."shapeObject_p;

define some convenience macros for accessing the parts
sanely.

•define getObjectClasslobjec:
((object) ? KshapeObject_p) (object))->class : NULL)

symbols defined by shapeClass for method inheritance.
These are dummy procedures. The procedure names are
used as function pointers in the appropriate subclass
method slot instead of a 'real' procedure. During
class setup. shapeClass checks tor these symbol.

•>y are found, they are replaced by the actual
shapeClass function pointer.

extern shapeClass_t .shapeClass;

xtsrn
extern
extern
extern
extern
extern

int inherit Display I object_p.window_p)j

int inheritErasel object_p, window_p);

int InhcritHighlight (object_p.window_p);

int inheritUnhighlight I object_p.window_p);

int inheritlnsertdragi objcct_p.window_p
|

;

int inheritHovedragl object_p,window_p.
double*, double');

extern int inheritSizedragi object_p,window_p.
double. double,
double', double*):

extern int inheritRotatedragl object_p.window_p.

double. double. double*);

int inheritHove(object_p, double, double);

int inhentResizel object_p, double. double,
double, double I;

int inheritRotate) object_p, double. double, double)

double inheritPointToObject (object_p,
double, double)

j

int inhentExtent (object_p. double'. double*,
double'. doublr*

extern
extern

extern
extern

xttrn

'/

This is the shape object definition. The class
neaber is a 'handle' to the object's class and
methods.

Erst member in any object is a pointer to
the class structure which contains the methods
for the object.
The SHAPE_PART contains members specific to all
geometric shape objects.
inx.miny.maxx.maxy are coordinates of the
bounding box for any object.

iMdif

•define OBJECT_PART \

class_p class;

v

void "next;

•define 5HAPE_PART \

double minx.miny.-\

double maxx.maxy;

SHAPECLASSP_DEFS

Listing Two ImeClassP.h

Listing 2. Private include file for lineClass.

lineClassP.h • lineClass extends shapeClass to include
tl hods for finding, dragging, and

moving the individual points in a
line.

The structure for line objects extends
the shape object structure to include
a pointer to the list of points in the

object.

(c) Copyright 1991. Forest W, Arnold
All rights reserved.

tUstings 1-7 can befound on the AC'S TECH Disk)

Vol. 2. Num. 1 $M 991

*

•Ifndef LINECLASSP_DEPS
•define LINECLASSP.DEFS

•

.

•include 'shape
•tnclud-

' draggmj.
•

• do: me lihec.part \

point_p (*findPo;nt l (object
(•dragPoint (

i

('ovePoint I I

•

• str .
•:.. ::

• structure.

typedcf struct. _UneC
(

CLASS.PART
SHAPEC_PAHT

* Line Object Part - line
* points to shape object.
* coordinates of the line.

*

iods for finding,

.1 by "ovei shape
LINE_PAPT is added to the end of

shape object :

,PART
PART

1

' ect_Pj

•

a clas5_p

I

i

• external do subclassei
• export . and

cedures.
•

. eClass;

*

lass.

point,

define LINE_PART \

igPoint |c:

low.

double 'dx. double 'dyi;

-_P object. point_p point,
double dx, double dyl

:

Available For A Limited Time!

ACsTECH Volume 1

The Complete Set

ONLY $45.00

4 BIG Issues (384 pages packed with technical Amiga information!)

4 Disks filled with sample c<xk\ apllientions. and utilities!

Don't Put II Off! Order Today! Call Toll Free 1-800-345-3360

AC'sTECH ,M

Implementing

anARexx Interface in your

C Program

By now. I am sure lh.n many Amiga users have heard

about ARexx and are well-aware of ihe capabilities ot this macro
language. I will not repeat the same information here. You will

need some degree of familiarity with ARexx and a fairly good
working knowledge ofC to put the information presented in this

article togood use. If you are not that familiar with ARexx orC a

study of those languages will help you understand this article

belter.

Misconceptions

Before I began working with ARexx, I had some miscon-

ceptions concerning implementing an ARexx interface in myown
programs. I believe other programmers also have some of these

misconceptions. The following paragraphs will cover some of
these possible misconceptions.

At first. 1 thought that it would be too difficult to add an

ARexx interface lo a program I had written Thai turned oul lo be
false, but thatwas mostly because ofmy programming style. There
are programming styles that are conducive to adding an ARexx
interface and there are programming styles that make it quite

laborious. 1 am not suggesting that one style is correct and another
style is incorrect—it is simply a matter of preference. However,
when it comes to adding an ARexx interface, your programming
style can save you programming time or Increase il.

If you are a programmer that believes in the structured

approach lo programming, you should have little difficulty add-
ing a ARexx interface to your programs. Structured programming
uses separate functions lo execute the subtasks that the program
requires to perform its job. Each function is kept as small as
possible to do ils particular subtask. The structured programmer
then includes calls lo Ihese functions within Ihe C programming
constructs such as the switch, if-else, do, while, and for statements

When adding an ARexx interface, it is just a matter of calling the

proper function to perform Ihe subtask required to fulfill the

command requested by an ARexx message. This is the most
efficient programming style when it comes lo adding an ARexx
interface. Some very good articles describing the structured pro-

gramming approach to programming have been written by Paul

Castonguay in previous AC TECH issues.

Thealternativetotheslructuredprogrammingapproach

is lo include Ihe code thai executes each subtask within the C
programming constructs mentioned earlier. Each case within a

switch construct contains thecode required to perform a particular

subtask rather than calling a function, for example. If this type of

programming is your style, you will need to add functions to your
program lo execute when you start receiving commands in the

form of ARexx messages. Redundant programming results since

most of the instructions contained in the switch statement are

going to be almost exactly the same as in the functionsyou have to

add to execute the ARexx command requests. This is the least

efficient programming style when it comes lo adding an ARexx
interface.

So you see, the difficulty you experience in implement-

ing an ARexx interface in your program has much todo with your
style, or approach lo programming. If you are considering writing

a program in which you would like to include an ARexx interface,

Ihen you might wanl lo consider using a structured approach to

programming. You should write eachcommand so that you call it

in exactly the same manner whether the source of (he request is

from your ARexx interface or from any other source.

Another misconception some public domain and
shareware programmers might have is that they don't need to put

an ARexx interface in their programs because not toomany Amiga
owners have ARexx.Some time ago lhat might have been true, but

consider this:whenAmiga owners upgrade loAmigaDOS2.0,and
almost every Amiga owner will inevitably wanl (o, they will all

have ARexx. Even now I suspect a large number of the Amiga
Owner? have ARexx. If it were not so, Ihe commercial software

houses would not feel compelled lo include ARexx interfaces in

their programs. Public domain and shareware programs, some of

which are every bit as good as their commercial counterparts, can
also benefit from an ARexx interface. ImagineAmiga power users

combining the use of your program with the commercial programs
Ihey have.

If you're concerned about the increase in the size of your
program, you have no need to worry. Again, your style of pro-

gramming determines this. If you write redundant code to imple-

ment each command your program can perform, your code si/e is

going to increase much more than if you write functions lhat you
can call from any location in your program. So. not only can your
programming style determine the difficulty you are going to have

including an ARexx interface, but il will also determine the size of

the additional code you will need lo write to have an ARexx
interface in your program.

by David Blackwell

Vol. 2, Num. 1 < 1991

Reasons for an ARexx Interface

I have already touched on some of the reasons why you
might want to add an ARexx interlace. If you area public domain or

shareware programmer, you obviouslv want vour program to be

used and enjoyed. Anything you can add to your program thai will

increase its usefulness will ensure that it does gel used. An ARexx
interface does increase the utility of your program. Even if you're
simply writing a program for your own personal need, an ARexx
interface will enhance its usefulness. However, it vou write a pro-

gram for your own personal need that you get considerable use out

of, I would suggest introducing It into the publicdomain or releasing

it as shareware.

Consider how your program could perform when com-
bined with a high quality commercial, public domain, or shareware

program. You could write an ARexx macro program that would
unify the two programs. You coutd easily switch between the pro-

grams in memory making it appear as one unified programming
environment. Staggering possibilities flood my imagination

This type of program integration mav also save you pro-

gramming time You may want to write a program that modi he> the

output of another program to suit your specific needs. If bolh pro-

grams have an ARexx interface, you are all set. You can then concen-

trate your work on the code to perform the modification and let the

other program handle the initial work.

Sure, you could also accomplish this without each program
containing an ARexx interface. This would require you to run one
program and perform the work you want to do. After you had
finished with the first program, you would run yourown program to

modify the output of the first program. That's not too much trouble.

I guess, if you're used to that kind of juggling with your programs
However, 1 think that the idea of multi-tasking two ormore programs
under the control of a macro program is much more attractive. Both

programs could be working on the same data to produce the final

output that you want. This is what most Amiga owners are used to.

This is the reason for a macro language like ARexx.

Another good reason for an ARexx interface is the control

it gives the user over your program. Many software companies are

going to great lengths in their advertising to inform Amiga owners

and potential software purchasers when their products contain an

ARexx interface. I believe they realize that the potential to tailor their

program to the user's specific needs is very attractive to the user.

Whenever I look at a new software package to buy, one of the first

things I look for is an ARexx interface. I might not be able to make use

oi it right away, but 1 mav eventually put it to good use It vou are

producing a program with commercial or shareware potential, an
ARexx interface may translate into monetary gains. If you are pro-

ducing a program that you intend to release into the public domain,
an ARexx interface may be just what you need to persuade people to

try your program. Whether you are going for income or for the

personal satisfaction of knowing that your program is being put to

good use, an ARexx interface can help.

One final reason for an ARexx interface: support for the

ARexx language is continuing to grow. Recently I have seen two new
products that expand the ARexx language as released by Bill Hawes.

One is an object-oriented programming tool and the other is an

ARexx compiler. With the growth of support will most likely come.in

increase in interest bycommon Amiga owner* Nhmv tor .1 software

package to be successful, I believe thai an ARexx interlace will be
essential.

Programming the Interface

llu- following description oi the steps required to add an
interface will give vou what you need to get started I he interface can

be '»s simple or as complex OS VOU want to make 1! 1 he more complex
of an interface vou want However. Aeinoreprogramming you will

do to implement it 1 will give v«u the basics ami then II is up to vou

lO determine how far vou want to go with them
The very first thing youmustdo Isopen thcrexxsys llbrar)

through a call to the Exec's Openl.ibrary function You must put the

return value from this function into I global variable named
RewSvsliase After you have opened the library, vou haveaccess to

all the ARexx system functions I will not cover these functions since

that would take too long, and thev an? all well covered in Appendix

C of the ARexx User's Reference Manual.

Getting! message port up and running should be your next

priority. The easiest way to accomplish that is bv using the Exec's

CrealePort function (a complete description of this function can In-

found in the version J i ROM Kernal Reference Manual: Libraries and

t, page 281 oronpageB-5ol the version 1 2 Exec RKM), ihe
v re.itePort function will allocateall the necessarv memory. add vour

port to the 1'xec's public port list, and allocatesa Signal bit fOTUSCWith

this message port. This message purl can be considered the hub of

your interface.Command requests, information requests, and replies

to messages you sent out will come through this message port All ol

your interaction with ARexx and any other ARexx host program or

macro will go through this message port Because this message port

is vital to the execution of your interface, it is important that you keep

up with its activity.

Most likely, your program will be receiving input from

some source, and your program will probablj be waiting foi some
event to occur before it can proceed with processing litis will most

likely be in one form of the Wait function or another Adding yoin

port signal to the list of signals vou are waiting on is simple and

something you are probablv already familiar with. If vou are untam il-

ia r with the Wait function orhow to set up to wait tor multiple signals,

vou can reler to the main function of the I ilcr.v source code (Listing

Two). Toward the end of the mam function, 1 set up the signals I am
going to wait on. and then in the while loop that follows, 1 wail on

certain signals to occur. Aftermy program wakes up, I test the return

value from the Wait function lo determine which signal woke up my
program.

The alternative to waiting on signals to wake up vour

program is to create a bus\ loop .nut check your message port

periodically toseeil there is a message mailing. However, tins type

of programming is not considered appropriate in a multitasking

operating system I his generally slowsdown the s\ stem and irritates

many users. Therefore. I recommend the first procedure.

When your program wake's up and vou have determined

that the signal you allocated for vour ARexx message port is the

culprit, you need to get the new message .m^\ process it Call the

Exec's GetMsg function to get the address of the RexxMsg structure.

(Refer to FigureOne for the RexxMsg sirm Hire definition .1 Now that

you have the RexxMsg structure addTOSS vou can determine what is

being requested ol vour program.

"Ifyou are producing a program with commercial or slwreware potential, an ARexx

interface may translate into monetary gains.
//

AC'S TECH 1 "

The request will be contained in the

rm_Arps|01 field, alsoknown asARCO, of the RexxMsg
structure. This is the RexxArg structure that contains

the command name (your program name) and the

arguments that go with il. (Refer to Figure Two for the

RexxArg structure definition.) The value contained in

ARCO can be treated like a pointer to a C style null-

terminated string since that is basically what it is. All the

fields in the RexxArg structure can be accessed at nega-

tive offsets from this pointer. However, this string is

what contains all the information you arc looking for

The first argument is thecommand name. You use this

to determine which function to call. The remainder of

the string should be parsed and sent to the function that

executes the requested action. It is the information

following the command name that you will need to

extract from this string All arguments are sent in string

form. If you are expecting numeric arguments, you will

need to use some of the C standard library functions to

convert them to the format you require. There is a

special condition that you need to be aware of This

occurswhen the macro programmer requests tha t ARexx
do the parsing for you.

Since you are fust writing the host application

and not every macro that could possibly call your
program, you need to be aware that not every macro
needs to call your program in exactly thesame manner.

To restrict the manner in which your program may be

addressed by other programs is considered quite rude

in some programming circles. What I am getting at is

that a macro programmer can request that ARexx
tokenize the command string prior to sending the

RexxMsg structure to your program. The programmer
does thisby setting theRXFB_TOKENcommand modi-
fier flag bit in the rm_Action field of his or her RexxMsg
structure. (Figure Three contains a complete listing of

theCommand modifier flagbits.)When ARexx receives

a message structure with this bit set, it breaks up the

ARCO string intoseparalestringsandcreatesa RexxArg
structure for each oneand places them in the rm_ Args[0-

15],ARGO-ARG!5,heldsin the order they appear in the

command string. Tocorrectly handle this situation, you

need onlt to check the RXFB_TOKEN bit, and if it is set,

get your arguments from the individual rm_Args(]

fields and convert them as needed. To determine how
many arguments the command string had, check the

lowest nibble of the rm_Action field. This will be set to

the number of arguments. If the command string has

not been tokenized, then you will need to parse it «is

previously explained.

Once you have parsed the command and
processed the request, you reply to the message. The

important thing here is to report on the result of your
processing so the program that sent the message can
know what action to take. If all went well, set the

rm.Resultl field to RC_OK. (See Figure Four for the

ARexx return codes.) The rm_Result2 field is used to

return a pointer to the result string if theRXFB.RESULT
command modifier bit is set. The return string must be

in the form of a RexxArg string. A result string should

be returned only if requested and no errors occurred

during you processing. If you were unsuccessful in

your attempt to process the request, you set the

rm_Resultl field with severity level of the error and the

rm Result2 field should be set to zero.

Figure One
RexxMsg Structure Definition

struct RexxMsg l

struct Message nn_Node; * Exec message structure
APTR rm_TaskBlocK; ' pointer to global structure
APTR rm.LibBase; ' library base
LONG rm_Action; cocmand code
LONG rm_Resultl; " huIc

'
:

•

• - IARG0 - M
str. • •' • • port
STBtTP m_COMU -

' OSS
STRPTR nn_FileExt; •

LONG rm_Stdinj am
LONG rm_Stdout;
LONG rm_avail;

1
;

• on

Figure Two
RexxArg Structure Definition

sc rucc RexxArg (

LONG ra_Size; •
•

. . ength •/
UWORD ra_Length; * :'

. : :
•

UBYTE ra_F. '

. ags •/

UBYTE ra_Hash,- / * hash code
BYTE ra_Bufl

);

/* bu: •

Table One
Command Modifier Flag Bits

RXFB NOIO
RXFB RESULT
RXFB STRING
RXFB TOKEN
RXFB NONRET

Suppress I/O inheritance

Result string expected
Program is a string file

Tokenize the command line

A non-return message

Figure Three
ARexx Return Codes tor General Use

RC FAIL -1 Something's wrong
RC OK Success
RC WARN 5 Warning only

RC ERROR 10 Something's wrong
RC FATAL 20 Complete or severe failure

Figure Four
Rexx Data Structure

struct RexxData |

struct XsgPort RexxPort;

CHAR £>-

APTR Func:

struct •RexxLib;

APTO Error;

APT* Rer I

Ul£tC RexxMask;

ULCfC User Data;

/* ar.: .: a •

;

:

Vol. 2, Num. 1 ©1991

Not every message received at your message port is .1

request for some sort of action. With only one exception, if you send
any messages to the ARexx resident process, you can expect to

eventually receive reply messages.When these repliesstart rolling in.

you need to be able lo distinguish between them and requests for

information or command requests. This is a fairly straightforward
procedure. You check to see if the message you just retrieved is the

r-.;v\I KIT! YMSC rhiswillbeintheL'BYTf :
ln lype field in the

rm_Node message structure in your RexxMsg message structure.

The test could look like this:

'Hens«g«->n*_Node.tnn_Node.ln_Typ« "^ rrr_BEPLYMSGI

When you do determine that it is a reply message, check for

possible error conditions and handle any that appear. If all went well
and you requested a return string, you need to extract the return

string, delete any RexxArg's and then delete the RexxMsg itself. If

you did receive a return string, you are responsible to delete this

RexxArg structure when you are done with it

Anotherway todistinguish between requests and replies is

to set up .1 separate message pott for replies only. Put the address of

this message port in the mn_ReplyPort field of the RexxMsg message
structure.

MyMeBsaoe->m_Hod*.nm_ReplyPort : HyReplyPort:

Now, when the message returns to you it willcome back to your reply

port, and you can have a customized function to handle all reply

messages received at this port. Your other ARexx message port will

only receive requests of one kind or another and can have its own
(unction to send off those request to your program. The way you
handle your message traffic is up lo you. Each way has its pros and
cons.

Earlier I referred lo the fact that some messages you send
out may not come back in the form of a reply message. If you set the

RXFB_NONRET command modifier flag bit in the RexxMsg
rm_Aelion field, you will never hear from that message again. Maybe
thai is a good idea What happens, however, it the action you
requested is not successfully completed? You may never know. Live
on the edge; try it.

So far I have just written about commands received from
other programs instructing your program on what to do. However,
you can direct other programs through your ARexx interface also.

You can get ARexx macros running. You can run other host applica-

tions. You can exchange information with other host applications.

You can even combine these possibilities in new and imaginative
ways. All of your communications with exterior program*, however,
should go through the ARexx resident process. That requires you to

get an ARexx message put together with the proper initialization of
the fields that are required to get the message to the proper destina-

tion.

The first thing you have to do, of course, is allocate some
memory for the RexxMsg structure. I generally request that the

memory be cleared as it is allocated (ex., MyRexxMsg =

AllocMem(sizeof(strucI RexxMsg), MEMF.CLEAR)). This has the
effect of initializing all the unused RexxMsg fields for you. All you
have to do then i> set up the fieldsyou are using. The rm_Action field

is extremely important. This is the action code (command) you are

sending to ARexx. There are a number of these action axles, but we
will focus on the command-level invocation code (RXCOMM). As
previously covered, there are some command modifier flag bits that

can be set in the rm_Action field to further tailor the action code.
These command modifier flag bits can be combined to finely tweak

the command execution. However, setting the RXFB_NONRET and
the RXFB_RESULT biisat thesame timemay have some serious side
effects. The first bit instructs ARexx not to return the message to you
and the second bit requests that a result string be returned in the
message structure that you just requested not be returned. (What a

paradox for AKexx I am not exactly sure what would happen.) Next
you place your message port's address in the MN_REPLYPORTand
rm_PassPort fields of your message structure. Then you put the

pointer to your message port's name in the MN_NAME and the

rm_CommAddr fields. Optionally, you can supply a file extension
for ARexx to usewhen looking for thecommand name you sent to be
executed by placinga pointer toafilcextension string in the rm_FileExt
field, and you can send your program's default input and output
filehandles by placing them in the rm_Stdin and rm_Stdout fields

respectively.

As described, the task of implementing an ARexx interface

seems quite imposing. There are quit a few minor details that must be
attended to. The task is simple enough, but allocating and releasing

memory forARexx messagesand argstringscan take its toll. Creating
a message port for your interface to use, monitoring the message
port's activity, parsing thecommand strings, distinguishing between
command requests and reply messages, all the tasks associated with
sending acommand toARexx and finally deleting your message port
when you arc done with it can be a nuisance. Don't get me wrong, an
ARexx interface is worth all you go through to have it. On the other

hand, if most of the tedious work was done for you, wouldn't you
want to take advantage of that?

RexxappMbrary Answers the Call

That is exactly what Jeff Glart of Dissidents Software has
done. He has put together a library of functions that will take care of
all themundane tasks associated with an ARexx interface. This is the

rexxapp.library.

This library automatically handlesall of the message traffic

associated with your ARexx message port. It accepts asynchronous
ARexx messages and sends both synchronous and asynchronous
messages to ARexx on behalf of your program. This means that you
can control other programs or be controlled by other programs
through this library.

The rexxapp.library allocates and frees the memory for all

the ARexx structures it uses. You no longer work directly with the

ARexx resident process. You don't have to supply the routines to

handlea message port. You give the library a message port name.and
it opens the message port. The library creates all theARexx messages
and sends them out at your request. It also distinguishes between
commands received and replies to messages you sent out. It can even
call separate routines based on whether a reply message returns a
result string oran errorcondition. All this processingpower ispacked
into just seven functions.

This limitednumber of functions means that with very little

programming you can have an ARexx interface. To take advantageof
the library, first set up the RexxData structure defined by Jeff C'.latt

for use by the library. (See Figure Five for the RexxData structure.)

RexxData Structure

The RexxData structure is a required argument for every
function in Ihe library. It is a variable length structure. The size of the
structure varies with thenumber ofcommands your program recog-

nizes You supply the number of commands in the NUMCMDS
variable in your header file. This variable must be defined before you
declare the RexxData structure type. You must initialize the Exten,

Func, Error, Result and AsscListj| fields of your RexxData structure

before you can use it.

AC'S TECH™

The l-xten field holds.i pointer to the null-terminated string

to useas thefUenameextension toaffix tocommands received by the

library that are not in your associated command list. This situation

can happen if the ARexx address command, followed bv your port

name, precedes a command the AKevv interpreter does not under-

stand. The ARexx interpreter will package this command up as an
argstring, place a pointer to ibis argstring in the AKC'iO field of a
RexxMsg structure and send this message to your program for

processing. If thiscommand is actually the name of an ARexx macro,

and not an internal command of your program, the library adds the

filename extension to it and sends the message back to the ARexx
resident process H I command invocation request. ARexx will then

run the macro for your. With this feature, you can USeARexx macros
in thesamefashionas internal commands. If you don't really want an

extension but you would like to take advantage ot this feature, put a

pointer to a nulled string in this field. The library will pass the

command on to ARexx exactly as received. By placing a zero in this

field you turn this feature off. That means that when the library

encountersa message sent to your message port, that does not contain

a command in your associated command list, it will be returned to

ARexx with an error value of 30 in the rm_Resultl field.

The Func.Errorand Result tiel.ls hold pointers to functions.

You write thesefunctions, and the library calls them to handle » ertain

situations. Writing these three functions is probabl) the most work
you will do in setting up your interface using the revxapp.library.

The Tunc field holds a pointer to the function you want the

library to call when a message arrives at your message port that has

a command in the argstring that is also found in your associated

command list. Dispatch is the name ol mv (unction The library calls

this function only when your program calls the ReceiveKew library

function (more on the ReceivcRexx function later) The dispatch

function receives four arguments: a pointer to the message that

prompted the call, the pointer to the function to call to execute the

requested command, a pointer to the argstring stripped of the com-

mand name, and a pointer to your RexxData structure. Tins function

should set up any arguments or variables that the requested function

needs and then calls the function. When the function you called

returns, you need to set up the result fields using the message pointer

you received in your dispatch function's first argument. The result

fields are set up differently depending on whether thecommand was

executed successfully or not. The library's SetupResults function

gives you a convenient way to set up the result fields (again, more on
theSetupResults function later). After vour dispatch function isdone,

youreturneitheraoneora/ero. A return value of one tells the librarv

to reply to the message. A return value of zero tells the librarv that

your program is going to reply to the message. Unless you absolutely

need to hold onto the message for some reason, you should let the

library reply to the message One side effect of holding onto the

message is that the ARexx script thai sent the message is suspended,

put to sleep in other words, until you replv to the message.

The Error field holdsa pointer to the function for the library

to call whenever any message that your program sends out returns

with ,ir\ error. Most likely this function will]ust print the error

message to the screen, in one manner or another, to let the user know
that an error occurred. If you don't want to do anything with error

returns, you must still provide a dummy routine. Yourcrror function

receives four arguments: the error code, a pointer to the enrol string.

a pointer to the message that returned with an error and a pointer to

your RexxData structure. Do not alter the error string

The Result field holds a pointer to the function for the

library tocall whenever any message your program sendsout returns

after a successful completion. What your functions does with the

result string depends on which function in your program sent the

$> F-BASIC 4.0

• t(* <W. BASK poiloot to» o* *"-90 »o<d-<*»

• CwveM* -* HW. 1000. JOOO. 7500. c MOO
• Cf—*.iid obfxi ">4*~ahQ awww i —p'wwd cod*

(<>• 6W?oo» -• d awieh * (>•*•+

• WrwWr »»»»•«" & to*pilotio" i<«ti

*., „ ik. (AST p-*i

• So aiViv* W.m bo* o> *eoVn to»Q«oct»

New Inversion 4.0:

• S*t>o'oi«>> C—»i»fl «A>o\An Co-

• Em, AREII Po"

• H>oh Inl MOUSI !•»"> o-d

Godjw Hm Bm- Add*d

• So morj «©>• upo/ooti 1

F-BASIC With User's Manual & Sample Programs Disk

- Only $99.95 -

F-BASIC With Complete Source Level DeBugger

- Only $159.95 -

F-BASIC Is Available Only From:

DELPHI NOETIC SYSTEMS. INC.

Post OfttS Bo* 7722

Raprf City. South D/ikou 57709 7722

S»mJ Otoe* 0> Moo#r On)*. o> Wr*» For Mo
0*0* Cwo o> COO. Cai

(605) 348-079 1

• M5*C • 1BI1W «wna>* a DMS. »«

Ckc* 1Q1 on flttW StMH card.

message in the Brst place ii you never request a result string to be
returned, mhi slill need lo provide .i dummy routine. Your result

function receives lour arguments: Ihe result code, a pointer to the

result string, a pointer lo Ihe message thai has relumed and a pointer

to your RexxData structure. Do not alter the result siring.

You can find the prototypes to my functions in Listing One,

my header Hie, and you can see Ihe actual code in Listing Two, my
source code. Tlie names nl mv functions are dispatch, error_rtn and

process_rtn. In this article, mv dispatch routine is a scaled down
routine. In Part Two of this article. 1 will add more to this routine to

make it a little more useful. My error routine, enor^rln, simply

displays!in.intorequester to Ihewindow to inform the user what has

happened. My return function, process_rtn, is just a dummy routine

in this program I never request a result string However, in the

completed program that will accompany Part Two of this article, this

routine may change if needed
The last field vou Initialize in the RexxData structure is the

AsscLisl|) field. Tins is an am) of C mdFntry structures. Fach com-

mand entry structure contains a name string of a command your

program recogni/es and a pointer to the lunclion that is associated

with this command string. The variable NUMCMDS defines the

number of commands in your list The las! entry in the lis! must be a

NULL entry so the NUMCMDS variable musi actually equal the

number of commands your program recognizes, plus one AH the

commands must be in lower-case letters with no imbedded spaces.

The library does nol require ihe completecommand string in order to

Vol.2, Num. 1 ©1991

match a command request to the command list entry llnneot youl
commands in your list is open, then the string ope will also result in

a match. Be sure to make all of your command names unique Am
command of yours that matches an ARexx instruction will be M-nl to

the ARexx interpreter instead of to your program
Now let's go over the functions available for you to use in

the library. There are only seven functions to cover SetRexxI'ort,

ReceiveRexx, SetupResults, FreeRexxPort, SendRexxCmd,
SyncRexxCmd and ASyncRexxCmd.

SeiRexxPort

TheSet RexxPort function must be called I irst. I his (unction

doesallyour Interfaceset up Youpus ita pointer toyourportname
and a pointer to your RexxData structure I His function returns a

signal bit mask assigned to your message port. You can use this mask
in the Exec Wait function to wail lor.icth \\\ al this message port The
port name string butter should be one byte larger than the actual

name. This function appends a number between 2-u on the end of

your portname to resolve any conflicts with port names already used.

The library can support only up to nine copies of your program
running at once. This function will initialize the remaining fields in

your RexxData structure. You call this function only once. This

function returns a zero it it was unsmvessfiil. Once you have success

ful set up. you are ready to continue.

ReceiveRexx

The ReceiveRexx function is the workhorse ol the librarv

When a message arrives at your message port, your program is

awakened by a return from the Wail (unction. When you test the

return value and determine that the signal trom your ARexx message
port caused your program tobecome ac tive.vou cat I the Receive Rex x

function. The ReceiveRexx function takes care of all the messages
waiting at your message port. It can tell the difference between
commands received from other programs and replies to messages

you initiated. If the message is a command, ReceiveRexx will call

your dispatch function. If the message is a reply, ReceiveRexxchecks
the rm.Rcsultl field of the message structure to see if the request h is

executed successfully. ReceiveRexx calls your result lunclion it ev-

erything went well; otherwise, it calls your error function. This

function frees the memory used by messages you sent out anil replies

to all messages that your message port receives The only lime it will

not reply to a message is if your dispatch function returns a zero

Before your dispatch function returns, howev er. it should havecalled

the SetupReslls function.

SetupResults

The SetupResults t unction is used by you to communicate
to the initialing program whether its request was successfully com-
pleted. You provide a primary result value, a secondary result value.

a pointer to a return string, a pointer to the message structure that

caused the action and a pointer to your RexxData structure It the

request was successful, pass a zero as IhiiIi the primary and secondary

result values, and you pass a pointer to a result string if the

RXFB_RESULTcommand modifier hit is sit II tlu-RXFB.RESULTbit
is not set or you don't have a siring to return, you supply a NULL as

a result string pointer. You return the pointer to the messagestructure

that ReceiveRexx supplied. You return error values fitting the error

severity level in both the primary and secondary 1 result values and a

NULL as the result string pointer if youdid not successfully complete
the request. This function does not return a value.

FreeRexxPort

The 1-rceRexxI'orl lunclion provides a clean exit lor your
ARexx interface Once you have executed tlu-S-tRexxPort function it

Is absolutely necessary to execute this function when your program
is done. This functions takes a lot of work off your hands: it replies to

any messages remaining in your queue, it closes, yourARexxm
port, it trees any resources it used, ,m^\ it closes the ARexx system

library. It any of the messages you sent have not returned yet, this

function will not return until every one ol them is accounted for.

Communication Routines

Pie next three library (unctions handle communications
with ARexx I wo ol these functions are high level functions; one
synchronous and ovw.' asynchronous. You pass (ewer argument- to

the higher level functions; therefore, the\ are easier t" use. You will

most likely get the most use out of the higher level functions. The one

km level (unction is used when you need the maximum control of

thecommunicationprocess thai bpossiblewith the library.You pass

twiceas many arguments to the lower-level (unction as compared to

the higher level (unctions The main attraction of the lower-level

communication (unction is lhat vou have a chance to manipulate ihe

RexxMsg structure before it is sent, and you gel the first look at it

when it returns. The document file thai is included with the library

alludes to the tact lhat this (unction is both synchronous and asyn-

chronous. During my testing, 1 was unable to get it to function

synchronously. I am continuing to try to work this problem, because

there are definitely times when you want to wait (or your request to

Brush executing before you continue with your processing.

SyncRexxCmd andASyncRexxCmd
SyncRexxC md and ASyncRexxCmd are the higher level

functions (or synchronous anil asynchronous communications re-

spectively. Other than the bask difference between synchronous and

asynchronous communications, these lunctions are very similar. Ihe

SyncRexxCmd function requires three arguments: a pointer to the

command siring, a pointer to the message structure thai caused the

act ion. and a pointer to your RexxData structure.TheASyncRexxCmd
function requires unlv t he command string pointer and the pointer lo

your RexxData Structure as arguments Both lunctions return a

pointer to the message Structure it created to communicate with

ARexx. However, it either funcuort cannol successfully Fulfill your
request, 11 returns a zero value, and it places a pointer to a null-

Urmmaled error message in the global variable RexxHrrMsg. An-
other difference in operation is that the SyncRexxCmd function

replies to the message that you passed the pointer lor. lliese (unctions

aremain I \ pro\ uledforeaseof use rather than themaximumamount
of control of the communication process.

SendRexxCmd
TheSendRexxCmd function, as ihe lowest-level communi-

cation function of the library, gives you the most control over the

communication process. Unlike the previous two functions where
the most control you had was to send a command string, with the

SendRexxCmd function, you provide the value for the mw\ction
field of ihe message structure, a pointer to a message Initialization

function, a pointer to a command string, a pointer to a returned

message (unction, a pointer to the message that caused this action,

and a pointer to your RexxData structure listing One contains the

prototype for theSendRexxCmd function The most promising pos-

sibilities come irom the two function pointers you provide.

AC'sTECH' M

Should You?
Amaze Them Every Month!
Amating Computing For The Commodore Amiga is dedicated lo Amig.i users

who want lo do more with their Amigas. From Amiga beginners to advanced

Amiga hardware hackers, AC consistently offers articles, reviews, hints, and
insights into the expanding capabilities of the Amiga. Amazing Computing is

always in touch with the latest new products and new achievements for the

Commodore Amiga. Whether it is an interest in Video production, program-

ming, business, productivity, or just great games, AC presents the finest the

Amiga has to offer. For exciting Amiga information in a clear and informative

style, there is no better value than Amazing Computing .

A Guide For Every Amiga User.
Give the Amiga user on your gift list even more information with a SuperSub
containing Amazing Computing and the world famous AC's GUIDE To Tlie

Commodore Amiga. AC's GUIDE (published twice each year) is a complete

listing of every piece of hardware and software available for the Amiga. This

vast reference lo the Commodore Amiga is divided and cross referenced to

provide accurate and immediate information on every product for the Amiga
Aside from the thousands of hardware and software products available, AC's

GUIDE also contains a thorough list and index to the complete Fred Fish

Collection as well as hundreds of other freely redistributable software

programs. No Amiga library should be without the latest AC's GUIDE.

More TECH!
AC's TECH For Tlte Commodore Amiga is an Amiga users ultimate technical

magazine. AC's TECH carries programming and hardware techniques too large

or involved to fit in Amazing Computing. Each quarterly issue comes complete

with a companion disk and is a must for Amiga users who are seriously

involved in understanding how the Amiga works. With hardware projects such

as creating your own grey scale digitizer and software tutorials such as

producing a ray tracing program, AC's TECH is the publication for readers to

harness their Amiga to fulfill their dreams.

To order phone

1-800-345-3360
(in the U.S. or Canada)

Foreign orders:

1-508-678-4200

or

FAX 1-508-675-6002.

or

r
i

i

i

i

i

i

i

i

i

YCO? The "Amazing"AC publications give me 3 GREAT reasons to save!
Please begin the subscnption(s) indicated below immediately!

Name

Address

City Sum ap

Charge my Visa

Expiration Date

MC I

Signature

PIMM arete lo mckcale im* is a New Subscription o> o Renewal

USE THE CONVENIENT '

I

I

I

ATTACHED CARD
MAIL TO:

Amazing Computing
P.O. Box 2140

Fall River, MA 02722-0869

I

I

I

I-

1 year of AC

1 -year SuperSub

:' ,'.!'- AC
2-year SuperSub

1 year ol AC TECH

12 big issues ot Amazing Computing!

Save over 49% off the cover price!

AC * AC s GUIDE - 14 issues total!

Save more than 46% off the cover prices!

24 big issues! Save over 59%! US only.

28 btg issues! Save more than 56%! US only.

4 big issues! Limited time offer - US only!

US S29.95

Canada/Mexico $38.95

Foreign Surface $49.97

US$36.00

Canada/Mexico $54.00

Foreign Surface $64.00 .

US S43.95

US S59.00

US $44.95

Please call for all other Canada/Mexico/foretgn surface ft Air Mail rale*.

Check or money order payments must be in US funds drawn on a US bank; subject to applicable sales tax.

You can use Ihe first function to modify or initialize any

fi«ld In the message structure before ills sent out. IheSendRexxCmd
function performs a default initialization beforepassing the message
structure lo your routine. Of particular interest to us are the ARG1-
ARG13. mi Passport. rm_CommAddr, Stdin and Stdout fields.

TheSendRexxCmd function initializes theARGO field with

the pointer to thecommand string you passed as voui third argument
in the function call, and it uses ARG14 and ARG15 for its own
purposes. This leaves you the ARG1-ARG13 fields to use however
you see tit You can use these fields to pass additional argstrings, C
style terminated strings, numeric values, or am other value that you
can fit into aSTRPTR (long) data type. However, von .in responsible

to free any memory allocated to pass argstrings or C style null

terminated strings. You can free this memory in your error and result

routines described earlier or in the returned message function for

which you pass a pointer to the SendRexxCmd function It is impor-

tant to remember that if you use some of the ARC1-ARG13 fields to

pass values other than argstrings, the program that receives the

message must be prepared to process those values- This eliminates

ARexx macros because they expect argstrings only.

The rm_PassPort field holds,i messageportaddress. AKexx
will parse the ARGO value to extract thecommand name. ARexx will

then search for a program by that name. If the program is not found.

ARexx will pass the message to the message port address in the

rm_PassPort field. The command name in ARGO mav not be a

program name at all but a command that the other program, whose
message port address you put in rmJPassPort, recognizes. This

provides a convenient way for you to pass commands to another

program using the ARexx resident process as an intermediary. I* this

field is a NULL and ARexx can not find the program, then ARexx
returns the message with a "Program not found" error message

Therm_CommAddr field on the other hand providesawa\
lo override the default initial hostaddres- | hja is I null-terminaled

stringandis"ROXX" by default. The ARexx l_ ser's Reference Manual
states, "The host address is the name of the message port to which
commands will be directed" You can redirect that command
message traffic by supplying your rn.-ss.ige port name as the default

address Ihe macros vou run with vour message DCK1 name Bfl the

default host address no longer need to execute the ARexx address

instruction to direct commands to your program. They come to vour

program automatically now. This is convenient if your program
supports multiple instances of itself. Each instance of your program
will have a unique message port name. This message port name will

be used as the default host .uldressbv each instance. That allows each

instance of your program to run exactly the same macros, and Ihe

commands issued by those macros will In- routed automatically to the

correct instance of your program by use of the default host address

value. Still a little vague? I will try to clarify it further with an
example.

"

ng. '

•wand for yo-..:

That macil) is easy enough to understand. First it prints a

message alerting the user that it is running, sends .i save command
and then quits Without the ARexx address command, the SSVC

command is sent directly to the ARexx resident prinress because the

default host address is "RFXX". If this macro is executed with your
host addressname supplied as the default, Ihe savecommand would
be sent directly to your program. With multiple instances of your

program running, each with unique host address names, the save

command will be sent to the proper instance of your program by use
otthedefault host addressnamewhen they execute this macro. Using
this feature allows you to write macros that can be used by any
program that supplies the proper default host address, and multiple
programs ,,m execute these macros, simultaneously.

The last two fields of interest, rm_Stdin and rm_Stdout,

allow you to redirect the input and output streams. If your program,
for one reason or another, has no default input and output streams,

it will be necessary for you to supply values for these fields if your

macro prints any information to the screen or prompts the user for

any information

The second function you supply to the SendRexxCmd
Function gets the tirst look at the message structure when it returns

You can use this routine to extra. I any special valuesyou expect to be

retumed< Vou may also need tofreesome memory used by argstrings

vou sent. This function can also be called after a fatal error, so it is

important to test return values before using them to ensure that they

are -ate to use I his function is passed a pointer to the RexxMsg you
sent out, therm_Resulll value and the rm_Result2 value. The docu-

ment tile that comes with the library says that if no routine is supplied
then the SendRexxCmd function executes asynchronously. There-
ton'. I assume that if a routine issupplied, theSendRexxCmd function

executes synchronously. However, even when I supplied a routine,

IheSendRexxCmd function continued to execute asynchronously. I

am continuing to lest this function.

Conclusion

Well, that is a fairly detailed description of the the

rexxapp. library written by Jeff Glatt of Dissidents Software. The
program included with this article is a completely functioning pro-

gram with just a shell of an ARexx interlace In Part Two of this article

we will complete the interface. As the program is, it is completely

useless except as a good test bed to explore the operation of the

rexxapp.library. If you are ingenious, you can modify it a little to lest

every function in the library. 1 have done that myself. The completed
program will be a program that you can get some use out of

If you examine the source code in Listing Two, you will get

abetter ideaofsomeofthematen.it I presented in my description of

the rexxapp.ltbrary. Because it is just an interface shell rather than a
fully functioning interface, the RexxData structure includes only the

commands available in the program's project menu.
\\ hen we complete Ihe interlace, we will give it access to

more commands, some of which are available only through the

ARexx interface. For some of the commands, we can write ARexx
macros lo execute them to reduce the size of Ihe memory-resident
host application I encourage you to take a close look at Ihe program
to see what potential it has for you. This program is intended lo be
running in the background at all limes for quick access to information
stored in small database type files You access it through the Alt-Ctrl-

f key combination, pull up Ihe information that your are looking for,

and then put the program back to sleep until you need it again. All it

needs t" reach this goal is more file access commands and some
display commands so \ ou •.-*'* see what is in the files. This is what we
will be adding in the next part of the article. If you think you could get

some use from a program like this, \ on can send me suggestions and
ideas tor commands you would like to see included in it. You can

le.u <• me a mes-age on C.lnie using the e-mail address, D.BIackwelll.

AC'S TECH 1 "

Listing One Filet h

. -

lUrlu** '
l

1

"mm '.

i tat* *•

<

<

I

1

"flirt lr.

- .

*

-

ImmhI >..

I

I it b

• X %

<

I

I

I

I

I

mtiM
MlflM
I

MIM
MRU
<numw 'mm

1LOO K
tLocm :c

......
. . - -

. ..." .,..!., .

HtjBMUc .'.-(---! .-...-i nan

Unci ooititf i

•

MBfBfl

m Itn.
vn mmU:
->C •Kill

: :•!

unci Ottin iMcLvitmonfJi

*|.j3».

••hlb:i

'

...
Inuu ".
.....

: c:: • una ou^ •. «r«t rasut *

';,J [(ani.iin.'.iK. tw fnOu*
.. •

n&M*itii

ax. *itpi

'UK.

-

uiu&i V>

1

1MB .,, ,,

1

1

Listing Two FlierC

Dm i.H i
-

ton

m

'.tot

LUK

1

-

"d;»r •'

1

.

1

'

HU.
-

<CMI *l
1

-m'.TWMjicm.
ijami.mjjifari.

'H« -

i,aj.

ou>rCM«i

••m *n'i>uuu;.

-

". MM •>

Vol. 2. Num. 1 ©1991

•
-

._.

C!e*t
'

ttMi'

.

latent**

- ;n ilotali m mwM Kit,,
.. .

.

» mum 1M . -twfi •.

.
-vnoot-

:
.
s»isDoi-

1

.-wis a

MtUI > «JI.

1

: 'OX':•

i i

1

LI <Cll»t*t

'

'

AC'S TECH' M

'

•

•

*

1

"

-

1 mnl r*r.l.ir •

.

>:u».

1

*

'
1

1

1

Vol. 2, Num. 1 ©1991

SOtfc-

-,T1M».
I

taaUi

• fiOJtC!

-

•XI r/.;ni. !•'

"ft\ 1-

'

-BiW:

•

'

1

,1

. -

... .

-•ni

pMflKItt

at* «>'

I
»•»;•

INK-
- • -.

.

*

iafmw.1

AC'S TECH'"

'

'

"

"

tUL vrt

I, WBLJ--

1

'

'

». -.*&•'W- l"W

•

' '

». KtlJHWlU II

*

'

•

1

Wli ».«t

*

Vol. 2, Num. 1 ©1991

. W(
/>•'. I

1

. * '

. .
MOCtMl ita ' j|WI1|tii

1

1

if <ne»i».'*

'
.

-.

«t; 1
.

IJWl.M

Im '

"

- nw*
•MS

• •:.

•r ran
•W At-mtmmn : rok

tattm
,
•*• r:-. IZ1

AC TECHAmiga
Learn ARexx.

For more information on advancedARexx topics, see:

An Introduction to IPC with ARexx by Dan Sugatski (ACs TECH Volume I, Number 1)

Interfacing Assembly Language Applications to ARexx bx JeffGlait (ACs TECH Volume 1, Number 2)

Intuition and Graphics in ARexx Scripts bx JeffClan (ACs TECH Volume I . Number 2)

C Macros for ARexx? by David Blackwel'l {ACs TECH Volume 1 . Number 3)

GPIO-Low-Cost Sequence Control by Ken Hall (ACs TECH Volume I , Number 4)

Programming with the ARexxDB RecordsManager bx Benton Jackson [ACs TECH Volume 1 , Number 4)

STOX—An ARexx-based System for Maintaining Stock Prices by Jack Fax {ACs TECH Volume 1 . Number 4)

Back Issues available while supplies last! Call NOW! 1-800-345-3360

AC'S TECH^

The Amiga and the

MIDI
Hardware

CAUTION: Be careful when attempting tobuild andconned liard ware

projects to your computer. Always check you work twice before attach-

ing the project to your computer. Attaching a home-built project to your

computer may void yourwarranty.PiM Publications, Inc, its agents, or

the author, is not responsiblefor any resulting damages,from the use or

misuse of this project. As alttiii/s. usecommon sense.

A revolution began in 1983 when several electronic musical

instrument manufacturers joined to publish a standard describ-

ing a system of communication between music synthesizers. The
Musical Instrument Digital Interface orMIDI is now available on
almost all electronic musical instruments. MIDI allowssynthesiz-

er>, sequent ers, rhythm machines, and effects boxes to control

one another and has greatly expanded the role computers now
play in music. With right software, an Amiga connected to aM IDI

instrument can record and play back a performance, edil and
print a musical score, act as a synthesizer patch editor and
librarian, and even teach you how to play!

MIDI is a digital serial communication specification that

consists of a physical standard which describes the type of

connector and cable to interconnect MIDI devices, a hardware
standard that specifies the design of the electrical interface and a

software standard which establishes thetypeand format ofMIDI
messages. MIDI has become such an important communication

system that some models of the Macintosh and Atari have MIDI
ports built-in.

While this is not intended to be a do-it-yourself construction

guide to build ing a MIDI interface, with some degree of technical

skill and the information in this article, you'll find it quite easy to

put one together. Be aware that you bear complete responsiblity

for any damage caused by the design and construction of such an
interface based on information presented in thisarticte. Unlike an
annoying program bug, an error in your design could cause

severe damage to your computer and any connected MIDI de-
vice Repair technicians are notably unsympathetic about hard-

ware hackers' mistakes and are apt to charge accordingly. It goes
without saying that the addition of any home brew circuit effec-

tively voids the manufacturer's warranty. Proceed cautiously!

by James Cook

Vol. 2. Num. 1 ©1991

Learn the ins and outs of the mysterious MIDI Hardware Specification...

and build your own MIDI Interface!

The Physical Specification

The typical MIDI compatible di*vu e usual!) has three 5-pin

female DIN ports. The MIDI l\ port receives transmissions ftom
other devices, the MIDI OUT port transmitsdata to otherdevices

and the MIDI THRU port acts ,t--,i MIDI OUT for all data meiwJ
at the MIDI IN port. Each MIDI OUT port can supplyoneandonlv
oneMIDI IN port. For this reasonsome MIDI devices ha\e several

MIDI OUT ports to transmit signals to multiple MIDI instru-

ments. A MIDI cable consists of a shielded single twisted pair of

n ires with male DIN plugson each end. The shield of the cable is

connected to pin 2 and the twisted pair is connected to pins -1 and

5. Pins 1 and 3 are not defined and the specification recommends
they not be used. The cable may not be longer than 50 feet. Note

that the 5-pin DIN cables sold to interconnect some types of hi-fi

equipment are not MIDI cables. Hi-fi DIN cablesdo nothave the
shield connected to pin 2 and therefore these cables are more
susceptible to induced electrical noise interfering with the MIDI
signal.

The Software Specification

While this article is primarily a discussion of the MIDI
hardware standard,some mention of the sott ware specification is

needed. A complete treatment ot MIDI software programming,

however, would require several articles Briefly, most MIDI
communications consist of multi-byte messages which are con-

structed of one Status byte followed by one or two I)ata b\ tes

Messages are divided into two types, Channel and System.

Channel messages include a four-bit number in the least signifi-

cant nibble of the Status byte to indicate which one of 16 MIDI
devices is to respond to the message. The most significant nibble

signals the receiver as to the function the transmitter expects it to

perform. The most significant bit in the Status byte is always set

to differentiate Status bytes from Data bytes. Two exceptions to

this message format are System Real-Timeand System Exclusive

messages. Real-Time messages are used for synchronizing all

MIDI devices in the system including sequencers and rhythm
units. Exclusive messages are special communicationswhichany
manufacturer may define for usebetween its own MIDI devices.

For example, to send a message to MIDI device 7 to play

middle C mezzo-piano, the transmitter would send 1O01O100

0011 1 10001000000. 1001 = NoteOn,0100 = channel 7,001 II 100 =

Ml (middle C is note number 60), 01000000 = 64 (a note velot. ity

roughly equal to striking a piano ke\ me/zo-piano). Note that

this message simply commands device seven to begin playing

middle C. Middle C will continue playing until it is commanded
to stop with a Note Off message or a Note On message with zero

velocity. Another important message is the Program Change
message which commands a receiving device to select a new
voice

or patch setting. There are several other messages as well includ-

ing control signals from pitch wheels, breath controllers, etc.

MIDI software has greatly expanded from that defined in the

original specification. The members of the International MIDI
Association recognized that thiswas inevitableand desirableand
actively encourages member manufacturers to make readily

available information on newcommands or message formats that

a firm may introduce on new equipment.

The Hardware Specification

The MIDI signal itself is a 5 mA current loop operating at a

speed of 31.25 Kbaud (+/- 1%), asynchronous. Each byte is

transmittedby a Universal Asynchronous Receiver/'Transmitter

or UART integrated circuit and is preceded by a start bit and
followed by a stop bit. While the transmitter design is relatively

noncntical as long as the 5 mA current loop ition is

adhered to, the receiver circuit must contain an optoisolator

which has a rise and fall time less than two microseconds. The
main purpose of the optoisolator is toensure that the transmitting

MIDI de\ ice is electrically isolated from the MIDI receiver An
optoisolator with as fas! a rise and fall time as possible helps

reduce the dreaded "MIDI delay" problem which occurs when
I luming more than three or four instruments MIDI delay will

cause the farther instruments to play noticeably after a key is

pressed on the transmitting instrument.

The MIDI specification identifies two optoisolators. the

Sharp PC-900 and the 1 1
1" 6N 1 W, as acceptable although others

nt.n be satisfactory. The hardware specification includes a sche-

matic diagram of the final receiver, transmitter and thru portions

of a MIDI interlace. Sec' Figure 1,

AC'S TECH'*

Figure One

TheMIDlOUT port haspin4 of the female

DIN jack connected to +5 volts through a 220

ohm resistor. Pin 5 is the transmitted signal

which also passes through a 220 ohm resistor.

One ormore invcrtors, asshown in Figure 2, art'

used to buffer the output of the L'ART and to

ensure that current is ON for a logical 0. The
MIDI IN port receives the signal at pin 4 which

is passed to the input ofan optoisolator through

v.-i another 220 ohm resistor. Inside the

optoisolator is an LED which turns on and off

with the received signal. The to 5 volt signal

transmitted from the UART divided by the total

resistance of the three 220ohm resistorsand the

LED makes up the 5 mA signal. The light emit-

tedby the LED inside the optoisolator fallsupon
a photoreceiver which switches a +5 volt signal

on and off. This signal is passedon to the receive

section of a serial UARTandisalso bufferedand
connected to the MIDI THRU port, il present, in

the same way as a MIDI OUT port. Pin 2 is left

unconnected at the MIDI IN port to prevent

shieldground loops which could induce electri-

cal interference into the MIDI signal.

MIDI Standard Hardware

Based on MID1 1 .0 Specifications

<,,. i

wtiat

TT

•9v

U
. io rm a Mat
* Sav flaurr 2

.'-
n|. ii

WW

rron rin 11 141*

ri-o- Fin 3 Hii-i
i * • r i•v • z

MUX OUT

Figure Two

The Amiga Interface

Unlike Apple and Atari, Commodore did

not design a MIDI port into the Amiga, choos-

ing to rely on third party developers to provide

I suitable interface. Fortunately, the Amiga en-

gineers did provide a programmable UART
integrated circuit for serial communications
capable of being set tocommunicate at the 31.25

Kbaud speed required by MIDI. Unlike most of
the serial ports available for PC clones, this

allows the Amiga to send and receive serial

communications at the rather speedy rate de-

manded by MIDI standards without the addi-

tion of a suitable UART in the MIDI interface.

The only thing an Amiga MIDI interface

must provide in addition to the standard MIDI
circuit is the hardware to properly implement
the 5 mA current loop output and the to 5 volt

input from the optoisolator. Since the Amiga's

serial port is a standard RS-232 port normally

used to communicate with modems and serial

printers, it is designed to send and receive sig-

nals which switch between -12 and >12 volts.

Some form of signal level conversion is neces-

sary to convert the + /- 12 volt signal to to +5
volts. The two most common level conversion

chips are the 1488 and 1489. The 1489 accepts

almost any voltage level input and converts it to

to +5 volts. The 1488 performs the opposite

function, converting a to +5 volt signal to ,\

signal which switches between voltage levels

Amiga Interface to

MIDI Hardware Specification

r.-«
Dl

ro

I IV

21 .'.V

H3^

• 12V

rftOH M1B1
nice ivi:r

ll±
14**i

4

, IO RIM

2-HC
• B TO MIDI

-* out I

»I , IO MIDI

H<

applied at pins I and 14. These two chips are also u>ed inside the

Amiga itself to convert the to *5 volt signals generated by the

internal logic to drive the RS-232 port. See Figure 2.

Toconvert a received MIDI signal, onemust feed the output
of the optoisolator directly to pin 2 of a 1488. With the exception

of the Amiga 1000, all Amiga serial ports have *12 volts con-

nected to pin 9 and -12 volts connected to pin 10 of the DB-25

Vol. 2, Num. 1 ©1991

connector. The 1488 can be powered by connecting pin 9 of the

DB-25 connector to pin 14 of the 1C and connecting pin 10 of the

serial connector to pin 1 of the chip. Pin 7 (Ground) should be

connected to pin 7 of the DB-25 connector. Pin 3 of the 1488 will

provide a + /- 1 2 volt signal to the receive input, pin 3, of the serial

port. While the 1488 contains four converting gates, only one is

needed. Amiga 1000 owners will find this method of signal

conversion difficult to implement since the 1000 does not supply
-12 volts through the serial connector (+12 volts is available from
pin 23). Amiga 1000 users will either have to supply -12 volts

externally or use an integrated circuit like the Sipex Sl'232 which
contains a voltage doublerand invertor circuit to convert *5 volts

to a +/- 10 volt signal level, which will be adequate to drive the

RS-232 port.

Thetransmitted signal from pin 2 of the Amiga's serial port

must be converted from +/- 12 volts tea to +5 volt signal. Since

only the Amiga 1000 provides a +5 volt power output from its DB-
25 connector (pin 21), a 7805 +5 volt regulator should be used.

Power from pin9 of the DB-25 connector is applied to pin I of the

7805 and ground from pin 7of theconnector is wired to pin 3. The
+5 volt output from pin 2 of the regulator is connected to pin 14

of the 1489 IC. The 1489, like the 1488, also provides four gates.

This allows the use of one 1489 to supply three MIDI OUT ports

and one MIDI THRU port. Connect pin 2 of the Amiga to pins 1.

4, and 10 of the 1489 and you'll have MIDI OUT's on pins 3, 6and
8. Simply connect pin 3 of the 1488 to pin 13 of the 1489 and pin

11 will providea MIDI THRU output. Since theSipexSP232chip
containstwo RS-232 to digital receiversand two digital to RS-232

transmitters, you maywant to consider using it if you need a onlv

single MIDI 'OUT, a MIDI THRU and a MIDI IN port. The
advantage to using thischip is that you could providean external

source of +5 volts topower the circuit, and the interface could be

connected toany Amiga computer (with a gender changer (or the

1000, of course). Small wall socket power supplies of »? volts are

readily available and relatively inexpensive.

Construction Hints

Construction of an Amiga MIDI interface can be quite simple.

Assembly techniques are non-critical and most of the electronic

components required are available at your local Radio Shack or

other electronic parts outlet. Only the optoisolator or the Sipex

chip will have to be special ordered. Total cost will he around $30.

I lere area few tips which can be applied to any hardware

you intend to connect to your computer to reduce the chance of

accidentally damaging your machine. All designs should be

sketched and thoroughly researched beforcanythingisassembled.

Your initial circuit should be built on a solderless breadboard
which allows quick and easy changes. After double checking

your breadboarded circuit for accuracy, connect vour circuit to

the Amiga in the safest way possible. Since the Amiga's power

supplies are reasonably well protected against shorts or over-

loads, simply powering up (he circuit should be your first step

For the MIDI interface, for example, connect only the */- 12 volt

pinsandground to your prototype circuit from the computer with

thepower off. With a voltmeter connected toground and +12 volts,

switchon the computer. If the voltage does not immediatclv rise

toaround fl2 volts, wrifefi iputer, Disconnect the inter-

face and switch the computer on again. L heck between pin 7

(ground (ami pin9 (+12 volts) on the RS-232 connector to make
sure vou haven't damaged the +12 volt supply. Ifyou are power-

ing > our interface through the serial port of yourcomputer, make
sureyouhavea serialcablewithall 25pins connected.Mostserial

cables have only the most commonly used pins connected. It von

are trying to use one ol these cables, the* /-1 2 volt line? will not

be connected to vour interface and the circuit will not work. Be

careful using a serial cable with all 25 pins connected with any
other serial de\ ke. Some modems, serial printers, etc., may be

damaged by the presence ol these 12 volt signals

Once you've established that the circuit is not shorting or

overloading the +/-12 volt supplies, connect the transmit and

rei ei\ e pins to the interlace and again measure the voltage after

switching on the computer. If everything seems to be working

properly, switch off the computer and plug in a MIDI cable

between the MIDI OUT port and MIDI IN port of your inleit.ue

Check vour voltage lev els once again. \ow b(H)t up your machine

and run your favorite telecommunications or terminal program.
It doesn't realb matter what baud rateoi bit set tings a tensed, but

make sure your local echo is turned off. Now, type on the

computer keyboard. It everything is working properly the tele-

communication or terminal program will be sending the charac-

ters you type out the serial port and into your interface. The
interface will transmit the characters using the MIDI signal

standard from the MIDI OL I port and
receive the same characters back on the MIDI IN port The

interface will convert the received Mgnals back to the RS-232

standard and the typed characters will be echoed on the screen.

|ust to make sure you've sot your communications program up
right, disconnect the MIDI cable and the characters should no
longer be echoed to the screen

isiiig the Interface

You're now ready to give the interface a try' This interface will

work with almost all MIDI software available for the Amiga. It

has been tested with DWm.vc AIhsu Construction Si7, ffcirs ct Pipes,

TigerCub and several publkdomain programs. Plug a MIDI cable

from the MIDI OUT port of your interlace to the MIDI IN port of

any MIDI compatible keyboard. Use another MIDI cable to

connect between the MIDI OUT port of the keyboard to the \1 II)l

IN of your computer. The only time you'll need the MIDI THRU
port is when you want another MIDI device to receive the same-

signals received bv the computer.

Follow the instructions on accessing a MIDI device care-

fully when running a MIDI program. Deluxe Music Construction

Set. tor example, requires you to explicitly enable the MIDI input

and output features from the menu You also have to declare a

MIDI channel and 'program change' or voice setting in your
score W hile DM(S is capable of providing an excellent means ot

directly editing a score into a format to drive MIDI devices, it does

not have the performance input features of a sequencer program
like Bars & Pipes, Music- X or Tiger Cub. If your MIDI keyboard

is a synthesi/er, you ma) wish to look into the many patch

librarians available to help organize and store your settings.

AC'S TECH IM

Programming the Amiga in Assembly Language
Part I—Getting Started

by William P. Nee

ISTRODUCTION
Writing assembly language programs for the Amiga is not

that complicated. The commands arc short, simple, and varied

enough to lei you do two or three routines with just one phrase

I have placed a glossary of commands at the end of this article,

and also 1 will discuss each one when it's used. In this series I'll

cover several types ofprogramming techniquesand demonstrate
a new procedure in each article. All of the machine language

programs may be assembled using the A68K Assembler and
Blink, both excellent public domain programs, included on this

disk, no other files or "includes" arc necessary. You will need to

refer to previous articles as we go along since not much old

information will be repeated. All of the programs will run on an

Amiga 500 using WorkBench vl.2 or higher. Thanks to Adrian

Kotik for debugging, proof-reading, and putting these articles

together.

First, let's get some terminology out of the way. Your
computer is filled with memory locations called bytes. Each byte

holds eight bits (called, from leftto right, bit7 to bit0> of informa-

tion either a "0" or a "1." Using just these two numbers (called

binary or Base 2 system) all values, commands, and instructions

can be represented. In one byte alone, there are 256 (2*) possible

combinations of "0" and "1." If you combine two bytes you get

one "word," and two words make up one "longword" that holds

32 bits of information. With only 512,000 bytes available in a

Standard Amiga 500 with no additional memory, you can begin

to get some idea of how much storage room is available.

Even though the computer uses the Base 2 for its numbers,

programmers find it easier to use the decimal Base 10 or the

hexadecimal Base 16. With the latter, you have to add six addi-

tional numbers (called "A" through "F") to the usual 1 through**.

So 10 in the Base 16 is 9*1 or A, 1 1 is B, and so forth; 16
l0

is 10u.

Since the largest number a byte can hold is 255
10
, it is often

convenient to think of that as FF
1(1

. To distinguish numbers in the

Base 16— usually called HEX— from numbers in the Base 10, the

HEX numbers are prefixed with #S and HEX locations In the

computer's memory are prefixed with S.

REVIEWING THE BASES
If you're familiar with Base 2 math, you might want to skip

this section. With just two numbers to use, the binary system isn't

that complicated but this is a good time to review it Addition i>

simple; 0* 1 = 1 and 1+1=10. Since each digit represents a power of

two. thenumber 1 1 1. would represent (1 '22)»(l'21)+(l"20)or7
(0

.

Asnumbers get higher, they also get longer to write so you can see

why the Base 16 or II IX became popular. Now with each number
representing a power of 16, the number #SFF would mean
(F'161)+(F*160) or 255 - remember that A through F in HEX
actually represent 10 through 15 in Base 10.

The most confusing part of computer math is probably

negative numbers. Since there is room for only those O's and 1 's,

how do we get a minus sign in there? You have to think of the

numbers you're using as being on a giant wheel going from to,

let's say, ffSFFFF. This number fills all the bits of one word so it

makesaconvenientexample.Tumingourirnaginarv wheel to the

left will show all the positive numbers: 0,1,2, etc. Rotating in the

opposite direction must then indicate the negative numbers.
Since the first negative number is KSFFFF, it must be the same as

•
1 ; next would be CSFFFE and it must be -2 and so forth. Halfway
through the wheel in either direction is the boundary between
positive and negative numbers.

The only difference between our positive and negative

numbers is that the left-most bit (or Most Significant Bit) of any-

negative number must always be set, that is, be a " 1
"; the MSB of

any positive number must always be a "0." This will be true for

whatever size number you use—byte, word, or long word. Since

we said that half-way through the wheel was the change-over

between plus and minus, we can effectively use only half of our

number range if we are going to need negative values. That is, if

your numbers range from to «*SFF, the portion from to #S7F is

positive and from *$FF to "$80 is negative. So the smallest

number is -128 and the largest is +127. If you need numbers
outside these values you'll have to increase the size of the range,

probably from one byte to oneword or "SFFFF. Now the numbers
from to »S7FFF are positive and from #$FFFF to #58000 are

negative.

I said that this was necessary if you wanted to use negative

numbers. But what if all your values will be positive ("0" is

always considered positive)? No problem; use the full range of all

your numbers, that is, from to #$FF (0 to 255) or from to

ffSFFFF. The computer will work the same, but is it up to you to

interpret the results.

When we get to BRANCH commands later on, you'll see

that some of the branches will dependon whetheryou could have
a negative or positive result. More mistakes are probably made in

this ansa than anywhere else. Your program can go along per-

fectly and then suddenly display the "Big Bang'' theory simply

Vol. 2, Num. 1 1991

ix cause you forgo i ih.it i here could be negative vahiesand didn't

branch accordingly. My early examples will all use positive

values so we won't have to worry about negative branching yet.

And what about fractional numbers? That's even more fun!

SETTING UP YOUR ASSEMBLER DISK

Enough theory. Let's actually get set up and try a simple

program. 1 suggest you usea strippeddown version ofWorkBench
adding A68K and Blink which are both included on this disk.

There may be later versions of those two PD programs, but I've

had no problems using, these. You can create your own disk bv
copying aWorkBenchdiskand removing the unnecessary files or

start with a blank disk, format it, use INSTALL to make it self-

bootingand then add these files. Name thisdisk ASSEMBLER:. I

find it easier to put the programs and commands I'll be using in

RAM: and RAM:C so my disk and start-up sequence look like:

tECTORY OF ASSEMBLER

C DIRECTORY I DIRECTORY DEVS DIRECTORY

a68K Port-Handte narratordevice

Mr* Ram-HanJef pwiidufci
cd printer device

copy S DIRECTORY sySefn-configuratiori

MM startup-sequence PRINTERS DIRECTORY

* (your printer)

d UBS DIRECTORY
matrtoeedoufatesKnryfed) FONTS DIRECTORY

m mathttans horary lopw.tont

more wnsiatorJCrary TOPAZ DIRECTORY

11

There may be otherCcommands you want to add such as "type"

or "info" but they probably won't be needed in RAM:C. Now that

you have the necessary fileson your ASSEMBLER disk, I suggest
that you use the following startup-sequence.

ASSEMBLER;S/STARTUP-SEQUENCE

dir ram;

makedir ram:c

copy c/a68klblmklcd!copy ram:c

copy c/deleteldirledfmakedir ramc
copy c/more ramx
path ramc

cd ram:

This startup-sequence will copy all of the files you will be
using into RAM:C and will put you in the root directory of RAM:
where you'll be saving and assembling your programs. At this

point I suggest formatting a fresh disk and calling it PROGRAMS.
Once theprograms have beendebugged and assembled in RAM

:

,

the executable programs and source codes will be copied onto

this disk. While all of the libraries on your ASSEMBLER disk

won't be used immediately, you might as well start trackingthem
down now. They'll all be needed eventually.

I use ED to type the programs, but you may use any word
processor that saves files in the ASCII mode. When writing a
machine language program the routine heading goes immedi-
ately to the left; commands must be at least one space over but I

use one tab over; the rest of the line, if any, must be at least one
space or tab over from the command. Comments may be added
but must be preceded by a semi-colon. It is always a good idea to

add as may comments as possible; two months after you write a

program it will be hard to remember what all those lines were
supposed to do. And try to make routine headings a good
understandable name. It's easier to figure out what
"SendToPrinter" will do rather than "L10".

YOUR FIRSTASSEMBLY LANGUAGE PROGRAM
This is a short, simpleprogram that will get you started and

let you check out your new disk. It causes the red power light on
your Amiga to blink off and on six times. Right now don't worry
about the commands and all those other cryptic symbols (we'll

get to them later); |ust type it in as written. Boot up your Amiga
with the ASSEMBLER disk and type in the following program
using ED or your favorite word processing program. Since ma-
chine language programs use simple words and phrases I prefer

using ED. It's also a fairly short program itselfand takes up very

little room in RAM:C.

start

:

move.

1

sp, stack .-save the Stack Pointer
number_of_

moveq 16, dl .-number of times to blink
power_of f

:

or.b •2,$bfeOQl ;set bit one to 1

moveq • O.dO ; clear dO
delayl

:

subq.w 11, dO ; subtract 1 from dO
bne.s delayl ,-branch if not back to

delay2:
subq.w 11, dO
bne.s del ay

2

power_on:
andl .

b

•253.$bfc001 .-clear bit one to
moveq • O.dO

delay 3:

subq.w 11. dO
bne

.

del ay

3

delay4:
subq.w • l.dO
bne.s delay*
subq 11, dl .'decrease number of blinks
bne.s power_of f .-branch if not finished
move.

1

stack. sp ; restore the Stack Pointer
rts .•return to CLI
even ; force an even address

stack del .-stack storage
end ;end of listing

After typing this program, save the source code in RAM: as

POWER.ASM; all A68K programs must end with .ASM. To
assemble it, type A68K POWER.ASM. Since you're in RAM:, the

disk won't have to come onand the assembly is extremely fast. If

there are any mistakes, the assembly listing will stopand tell you
what line has an error. Ifyou were lucky enough not have to have

AC'S TECH™

any errors the first lime, try changing the first "move I" to read

"mave.l". Now when you assemble, you'll get an error in line "2

and the phrase "No SuchOp-Code." Generally the A68K assem-

bler will only catch syntax errors and some type mismatches
(bytes, words, etc). The assembler can't tell you if your program
won't work properly or may crash

After assembling a program. AfvSK . reates a new fiU— in

thiscasecalled POWER.O. ThisObject filemust be linked tomake
it an executable program, so type BLINK POWER.O. Now you

have another listing called POWER; this is the assembled pro-

gram. Atsome later time you maywant todelote the accumulated

.O files. Before trying the assembled program, I would save it

along with the source code to disk; if your program does crash,

you'll loose everything in RAM;. You can either save your pro-

grams to the assembly disk or, as I usually do, to a Second

program-onlv disk called PROGRAMS. From RAM; type COPY
POWER.ASM PROGRAMS: and COPY POWER PROGRAMS:.
As you get more programs, you may want tocreatedirectorieson
your program disk and save programs in them, but for the time

being you can save this short program directly to disk.

Now you're ready to try your program. Type POWER and
the Amiga red light should blink six times and then stay on.

Congratulations! For many of you that was probably your first

assembly language program. By the way, throughout this series

I use "assembly language"and "machine language" interchange-

ably. With your firstprogram out of the way, it's time to get down
to basics and discuss how the Amiga processes the machine

language programs.

GETTING TECHNICAL
The Amiga stores information in registers There are eight

32-bit registers used for data (dO to d7) and seven used for

addresses (aO to a6); an eighth register <a7) is available but it is

generally used as a Stack Pointer (SP) for saving information

locations. Part of yet another register (CC) tells you the "Condi-

tion Code" for any operation—mainly if an operation produced

a value of or not, and if the result was a plus or minus number.

There are four main points to remember when writing Amiga
machine language programs:

1. All main headings (library, array locations, etc.) will be at

different locationswhen you first power-up; well, all but one.

This forcesyou t<» write "locatahle" programs butmore about
that in a later article.

2. Most subroutines are located in various libraries and are

accessed by going to an "offset" location from the library-.

3. Important items are structured; when settingup a screen, for

example, there are various elements that must be defined in

a specific order. This allows you to change parameters since

they are at a fixed distance from the main item.

4. All address locations must be even addresses—this is usual I v

handled by the assembler.

Finally, a brief discussion of the two major commands used

in assembly language. MOVE is used to put a value or the

contents ot one register intoanother register.Some of the possible

variations on MOVE are:

MOVE.B moves the right-most byte

MOVE.W moves the right-most word

MOVE.L moves the entire long word

MOVEA moves only to an address register

MOVEQ moves a signed byte value (a number Irom

-128 to *127) to a data register

MOVEM moves several registers at once

The othercommand is LEA—Load Effective Address. It's used to

move labeled locations to an address register or to increase the

contents of an address register. Some examples are:

LEA name.al moves the location or address of "name" into a 1

LEA I00(at) increases the address in al by 100

Any command with a parenthesis around a register means "the

contents of."

HOW WE DID THAT?
With that general information, let's review how you caused

the power light to blink several times. The MOVE.L command
saves the contents of the Stack Pointer in a location called "stack

"

Next, a MOVEQ was used to store »6 in registerd 1 . In the Amiga
500, location SBFE001 controls, among other things, the power

light, libit 1, the second bit from the right is
"0" so the light stays

on, but if that bit is set to 1, the light will go out The Basic AND
and ORcommands have the samemeaning in assembly language
and are often used to force a bit location to or 1. Any binary

numberORI willalwaysbe 1 while any numberORO remains the

same; any binary number AND will always be and any

number AND 1 remains the same. So when you OR a byte with

•2 (10,) bit 1 is set to 1.

Next, registerdO is cleared with a MOVEQ #0command —
bv the wav. this is thequickestwavtoclearany data register Then

*1 isSUBtracted fromdO(resultin'gin#$FFFF);SUBQand ADDQ
may only be used with values between «1 and "8. The BNE
(Branch if Not Equal to 0) will go back to "delay 1

:" until dO finally

reachesO; theS indicates a Short branch (-1 28 to + 127 bytes away).

Then the entire delay is repeated so you can notice it. The light is

turned back on by clearing bit 1 with ANDI.B #253 (1 1 1 1 1 101 ,);

the "I" means that an Immediate number will be used with the

AND command. After two more delays register dl is decreased

by 1 and the entire sequence repeated. Whendl finally reachesO,

the original contents of the Stack Pointer are restored. The RTS
(ReTum from Subroutine) takes us back to CLL EVEN is a code

to align the assembler to an even address; as 1 mentioned earlier

all addresses must begin at an even numbered location. After the

actual program a space is reserved as "stack" using the storage

command DC.L (Define Constant as a Long word value of 0).

FinatK, I \D signifies the end of the listing.

Let's talk about those libraries in more detail. The major

ones we'll use in this series are EXEC (tasks, memory, and ports),

IK)S (disk functions, read, write), GFX (graphics). MAUI.
MATHTRANS (sign, cosine, etc.), INT (windows and screens),

and TRANSLATE (speech). While there are several more librar-

ies, we'll work mainlv with these. All the subroutines we use are

Vol. 2, Num. 1 ©1991

AC'sTECH Back Issues
AC'S TECH Premiere Issue

Volume 1. Number 1

Uagu Warm a>ua IrUur* by /'flUi-
Rrcmxratiiaf MFU data (torn a ha d_.tid>

iceanf. -tih library Hubv .reatini; iiup data

and i It* mhrr micmuni and ihcIdI mcia ih.i

van be dear a.th ihr KrVvkt ihuiurmNrr ml
• In* ma,-, macro*

AmygallOS. f/W7 aWAVrni.rftiVBi»v
'rrnaiaari *« Marl fardW
(*i»im| i hard Jul utility mn| (!>
Ami(jIXrt .himhIi and Kit tDfT liar cdavar.

uaf recuruv* profianvniBf. in hniquei and

fllci« IcmolMCi la I D1I contnuaji
|M Jul i

t
Ik, luKeO ISaMmM Ihgu,;,,

tfTadtmm
tmmlm f-lM (156myteak)dlinurr lor In.

Am SSO lacaadn iMtruttican. Khcnuixi. and

ill WHUH »>|(1>HC ((JO Juki

Am /wiWmHmm latnPntnt Com-mamiea-

lit*H .l/B llf.ll

An inmtr out utpbj urp lot* uaM iian m
•lana.atin|a>ihlft'an>l ARrti

4a faftWarhu* la 0>« (U»- Unary by Jim lion
SprrddrielopnawailhthcifcHidrnii It HM
KhXM<tpKilk bbrart ilbm library offer*

pfnyannaii low letrl and mid le-rl final
IFF talk. aka.| **h »evernl bijhlorl II HM
•profit f alii (oadiifc)

/Iri/toa..* ' B.Ulmaal lmm*a%, >* ' I >i*g

JBC III In BiJy-i Hf,-.,*f. -

Dcv*iopM| uatahavr *ppl»atioii uua-r. iHc

Lame* dBC III librarv

(Mm *««*— i r™f—r«MJ *-*V"< /ro-
fOKTKA* *T K. (menn • fowl
UthaJ Ab-oft. FOR IKAN » to lair ad.aniaer

ofMM o(the Ajn,j. i ROM Kernel -Mhnu
«nuo< run C or auiMlj lanfiuar too* ion

fantBaot A Saver BocUUat* In /am mmVkI
FatiBoot ii hnxbloci Out oaockt> loan* m
entire dak mud memory. it.it. a RAM Jul
Md hoc*! fmm (hat RAM Jul (oadiUl

AmwtalMiSfor frpgraauman In nVwCiHai
II yea win to delete file* find uM file UaM,
•nnbum or ihr amaant of Jul «u, inratr or

read carmonn and ora ma pmceKr* fnim

iiitadtyowrirotramtftrBtcadna'loa Jiik)

' Monti i rawir1.U" It Iht Amiga
by Paul Kuif aid Wilr Cargol

Coourutt a >p«ial <aMc Md anir Ihr amcMaiy
MftWafe, « ModnU-r. Ikal MD ipmfair Hx
JWcrftfcnc io theAmp (« JhI i

SIM lluw* *kaa*eimn by ».*.» I>.u

A purm for pi«tranuntn

AC'S TECH
Volume 1, Number 2

CADAaMVarui. /ViVi> Fan I—Hull aaa1

Hr> Trmaifatau In l.iiu W At^-IJ

A drlailrd looi M oV mauVnuiKi and

>rofraMDnM| mhn-j-r^ u<cd in CAD lyMni
dcuin IWihr* baiK> loxmuna.1 inc

•Mlduif btocti ol a 1-o-d.nnuoMl CAD
(rofitia ixmlxti

lnUr1«xnt Atum+t, lam**** <MWM... M
4*«ii/., UffGlotl

HraioaddM AKriimpkawwaiMsiai
rfDCraaB. drmcaniiavd b> jJJm| a CCMptcac
ARrii irmknarMt— W a 6S000 imiMIi
LMfiuf* paim [w.^imii i.ii dna|

4aVi-« H.^ u 4aMV"»" f*»/f
hyPltdtrS KmatM
litiplcnicnl a iiiaacil wnuiix 'on line' hrlp

facility m)our appucaOotu kniaf utti pmnrrfal.

)« ta»>-lo-nw annal of faanno* fnl call

-rlp.l'(«id.Up

(V»al<| l** 4-ir* ' 001•C-AH /
(" /"dW CanMafaat]

Grmni uirud in C prDt>M>mni|« ihr Amirj
Includet a ptcxnui-m of me flm roncfpt in the

Ann|aIa<uitH« ravimnmia ihr npenin/ ol

liKane. i.xdiai

/mmMm *arf GraaJUri ui <*.. Vnafl
InJrgGlati
('•!(Ihr ARcai fnaclicai hbrary

,

n iwui ld»ar>. »b«h jddt i Ir- J-./rn Aktu
•rnnaadi thai alk— an ARcn *tnpl 10 atilm

bauiuaa and Ora|*ic« hbur> roMino uidiili

I VII aaVfaW Amiga 0. UJ# Hmtwi
A difl«r«->nin>d«:ui>niorM.XMilw

V'T'rf . "IT ., |. |
-.'

I UixaaJallall »* a HaJplm *,+ CI,. I

Add M:Kn« RAM (>.>«.) MB Ami,. MO
(p«I»6*.l-M)fel f« ahcM UOf

i«*i iMf Amiga Imlatlmm Gadatttfram a

fOKTKAS rrmaram: ran /f-(iu(0*>fraa

f-Wrrt. py A.i/fdi A m«l
L'uag aduni laarifarc loihe Amifi ROM
Kttmt kiHim inmiuim bmlraa (adgrit In
thcat inhnnrwi Id crratr a lupclrr IMo
Sumlatoi 4o«diU]

TaalMai tart I: A* /a(maWo« M J.f)

rV-iraaMiMf d. fol'~ 1 tAaauf

Ihr firu is a tmty Ol afioitt pirwatMl da-

ti.luu.nn m (onkinna Anafa profranmnaii

r*raWaam Thi» linat ac tool at ID
rnipaiaanmf tiaxrni lundiiki

ACS TECH
Volume 1. Numbers

CAIiAppiuana*. Ittuga—Pan II

hi /iwiiH ArmaU
Developm r-ent-tkivtn pnifram ahath anil Id
ui ihiii miir. and imav i*>|ntv irpaual
Iiohii iaii nudcl amid uiiaf juU Ihenw lin

J,a.

f Warn. /« AAV.. • h, /A..W Marhrtf
Ai,e»un| thr fall pmn k1 ARr fma C. Mnkt
fine nuiainci ami pca|ma>

VBKMON: Aa—U, languor/ .M—aW
nvDaafbNiit
lipUn)<ur Ami,, a Hb Uin unajar and

inKreUMi aucaibli laapHfc maMor luaditkl

tat n*,,l0a*uml II/ 41 •.•ava/Ktt J.fl

(omauaif lam I liltlt bi Braao Cuua
I

'
«m(thr nra feaiuna Md wviiro of

Anii,al>OS : 0. dcxlop ihr TO' tommaad line

auany—a <ny idau»oma«xaJI v ituner thr

.la-rrnt dintlur)
.
havrdoo a aikkaid aamr Ion

WO
rn.gramm.ai Iht Am,ga i 010 fa- (—faff //

I) I'-.i < .ii.-. ',..
|

Man iraIN f«"pammai(Ihe Anifa in C by

<nalin|)oui mi amdoa loadlatl

[Fat IIAMi: by Bf WJhmao
Aa inmatailioa In tihrarwi and IKhMdMa
mimrcd ui profram for ihr HAM-E drtolay

I'liat Haothit mlImAiumaif In Uft U<^
I' yim bur a aced lo pnm lonnaaicd xiui|> in

nxmbltr. n>T -aiUaw bant and code rwlini
toaoannxiiimanJ'iadon'iiiBdiikl

MiUNaar Ihuminwg An AamgmDOS 26
lluldtm 'Vafare by Bn*M> Coma
fiii the iiimik ba.1 iHn the AnuraDOS
• ildiard hul ml) undrr AmifilX& JO (on

dk*)

Caafigaratia* IlatfarSA&C
fit PtivJ f 4ih)analt

C<wlifurc)W .y.ltro for maliMure
prrforauaxe aith SAS-C—even on ibmumI
•)iarDM'<ondiia>

Hoi* lot lb, IfatMB 4a f-DadWo« la

lia.m TmaUi by P.ur DM
An MDoducbon la a imraft uheme anuhenrl.
in qui delffjrjwa. Mnrniom. and qomri ion

faVaaatlf l*r Mo«A (o-Pnxtiia*fnmt BASIC
bxKF /finiamf

li'tinf libnrm. arxeu Ihe Anaf.*< maib io-

pnxe««« from AiagfaBA&IC (on di<> I

AC'S TECH
Volume 1, Number 4

bate a) Amiga fAriridpawaf—

/!•>/» If—to* IJjy.ii

CATS Vice FVe-feM. Jeff S*bert>. ihare. I..

KeyiK-r addnu -itli ACi ItCH readm

CPU*—/«a~Cmf SkthaaaM CaMna)
A. k'lllaH

Tale inurol of your Amiaa a Mb Out VaJra
Titann-nuTiwtd Gcnml PUrpoae lauiface

Ken • craiabiaaonn o* a umpar ttaWoOtf
ctmil—atlHh >ou (M bmld'—and a Imlr

•oflaare imj. provide i lor Bom auixmai.

maanil rgalnil londiiki

Fntarammmg .«» (A/ AKtultM Kn-ot-di

Ifj-uf.r n. nV-Jon /dtanx

Lean hi uvc thi< powolial nea ARrti haxd
dalMit engine by creafiaj a phttnetunaj

MouVakr of aar "lib Ihr popular ihutaarr

Ule>k>nniuni>'aiionirri>rtafn. Vlt imdiill

lb, lh;laam,al ofa Bay Trat,,—fort /

6v»n—.Coi*.
The firti c4 . laopart km feataruif (he Ihrory

and applarauaa deuen uf a full featured

impLemtnuuon of an oprn«oikd rti-Dnuif
patkap inoihiki

The Vanyfin Solatia*—BalU famt P-a
Ian-air KapU- /i»J»„luJ *- t»*trrm*t
C">r iimr favorite yoyvtick nc* poarr aah itua

tamnlc. yn detailed «iep by-urp luaonal

•racaaaaiUf thr AaUfa .GU«C—fWf /f/

fry finaf Canon t *i i

Paul loMinuo h» popular naional wnr> -.ih

handfe*. uratamni diiptay modulev m
Mfradutuon lo protianiminn (/aphM imia. and

moth more'(on dull

Uaff launaa fa, Amimaang fmalrn
M 'rfl fJim
fell dDiualnan a hrlici *a, to aninaate

p>*nicr> at aril aa Ihr propel uw or two typev of

laarnnoU <oadiUI

STOX—A* AM,ix nura* ArUrai/or

WaMMiaiar .Sfort /Vw.i fry ; .,. .

Suy on fop ofBht nurkei a iih Ihe Adv.

•preaddvet. the BaudBandii lek

profian. the OEaar laaHiaatioa Servicr. aad

ARriiiowitaOloarchrr <ooJk»,

Iaxgaagt fjiraiMa*—Mrtafi a/ Typr SnagX
by Jamtmy HammoaAi
Ah tatroduclKin lo thr inapfervuna of <Ui«».

"lt>r*Siita*SMM|CeoMinKU londHki

AC's TECH Back Issues are available for ONLY $14.95 each.

For a limited lime. The AC's TECH Volume 1 (Complele Sel) is available for JUST $45.00

Call Now! 1-800-345-3360
(credit card orders only, please)

AC'S TECH'*

ACs TECH Disk
Volume 2, Number 1

A few notes before you dive into the disk!

You need a working knowledge of the AmigaDOS CLI as most of ihe files on the

ACS TECH disk arc onlv accessible from the CLI.

In order to fit as much information as possible on the ACs TECH Disk, we archived

many of the files, using the freely redistributable archive utility 'lharc' (which is

provided in the C: directory), lharc a/chive files have the filename extension ,\ih.

To unarchive a file/iw. /r/i. type lharc xfoo

For help with lharc. type lharc ?

Also, files wilh lock ' icons can be unarchivedfrom ihe WorkBench by double-clicking ihe icon, and supplying a path.

We pride ourselves in the quaflty of our print

ond magnetic meata pubfceahons However, in

the highly un-Vety event ot a faulty or dam-
oged d«sk. pteose return the dtek to PiM
PutoKconons, inc. for a free replacement
Please return the dbk to

ACs TECH
Dttk Replacement
P.O. Box 669
Foil Rrver. MA Q272Q-08cO

Be Sure to

Make a

Backup!

Out id Uk technical and ripenDKMM mow ol <*mx at

Ihe progmm on ihe AC i TECH l>«l. M Mvin iv

reader ID uumilcm etoenail j *heo unit j r penmenial

projTMii» Am iniuaic tovkvrl dn» uoi The tnurt

Itabdii) olih* ifulil; md pei(onnanre at the wtn-itta
ihe AC't TECH Onk n lutmed by IM puntuvi ISM

FabbcaMmv Inc. iheii diioitnam. o> Ihe* mnileiv » ill

ntn he liable lor tny direci. indirect. o> cnwaquewinl

damafei rtiullm j from the in*t natuK ol lie ulra air

on ihr AC* TECH Ih«l <TKn arnreme nay an apo!)

in (I frofraphml kjii

AUfeough dim) of the indmdwl file* Md due» "* ic> <•

the AC i TECH OiU vc (reeli irdmiMwuNe. Ike AC .

TIC MOivkiirfHMfclihec..|(ol»-io(iMn-)iiilltk.jnJ

duntanei no the AC | TICK DMt arc coe?it(M C IMO
IW I h v hM PuMbmiom. Ik.and mi) wh be dueaVatnl

m.ni-av T>wr«r>luxiNmcsc>iiciK»urkfl4luinaae

« •nhmrtNKbvcon or Ac ac. tech r>a

unci) mlal *hen .mlinj -.id hardnr
pm)e<i> Choi yom »«rt,. I- k*. fc> avoid mi damaci

thai i an happen Ahn. he a«art dial wunr. dan* pmjnU
tna> ond (he -arranim ol ynar lompottt nquaningnl

piM PuhU, iu«>» any of it • acrrm h n« meonuMr
(o» ant danueo iroiaffcd -h>W Mlcmrama tf"» p">|rvi

Vol. 2, Num. 1 ©1991

located at a specific offset away from its library location. The
INI I routine is. torexample, MA In tes aw ay trom theGFX library

location; or, more correctly, 324 bvtes away will tell you to jump
to some location that actually contains the PSET routine. In

addition to calling the routines, certain registers must contain

spcdfk Information for the routine to work. As we use each
libraryandroutine.nl include the offsets and required informa
tion.

As I had mentioned earlier, you won't know library ad-

dresses at power-up except for the EXEC library. It's address is

always stored in location $4 and it's always available. The routine

to open another library is called "OpenLibrary" and is located -

552 bytes away from the EXEC library. For this routine to work.

feral must contain the location of the library name you want
to open, and dO must contain the latest acceptable version num-
ber of that library, usually 0.

OPENING A UBRARY
Let's try opening theDOS library . This routine will work for

all libraries by just changing the library name. The three main
portions ol this program are the offsets we'll use, the program
itself, and a data/storage location. After the library is opened,
we'll use twoDOS routines to print amessage and print the actual

library location as a HEX number. The "Output" routine gets the

CLI screen-handler and returns its location in dO. The "Write"

routine will print a message or any characters in a string buffer;

A68K ASSEMBLER COMMANDS

OPCODES SOURCE.DESTINATION OPCODES SOURCE.DESTINATlGN

ADD.BAV/L

ADDA
ADDI
ADDQ

add a number or register to a register

destination is address register

immediate number

BRANCHES
GENERAL

BCC Branch it Carry Clear

BCS Branch if Carry Set
#1 through »8 BRA BRanch Always

BCC same as Branch il Higher or Same
BCS same as Branch It LOwer UNSIGNED:
BCHG
BCLR
BSET

test a bit and change it

clear a bit

set a tut

BEO
BH1

BHS

Branch it EQual
Branch it Higher

Branch if Higher or the Same
BTST test a bn BLO

BLS
Branch it LOwer
Branch it Lower or the SameCLR

CMP.BAV/L
CMPA.W/L
CMPI

clear a register

compare value and register

compare to address register

compare immediate value BEQ
SIGNED:

Branch if EQual
CMPM

DIVS
DIVU

(address register)*.(address register)'

signed 16 bit division

unsigned 16 bit division

BNE Branch it Not Equal

BGE Branch if Greater than or Equal
BGT Branch if Greater Than

EXG swap any registers BLE Branch if Less than or Equal
EXT
EXT.W

extend the sign

extend to bits 8 through 1

5

BLT
BMI
BPL

Branch it Loss Than
Branch it Minus
Branch if PLUSEXTL extend to bits 16 through 31

JMP jump to routine

BOOLIAN OPERATIONS
AND BAWL can't use address registers

JSR jump to routine, return when completed
LEA
MOVE BAWL
MOVEQ
MOVEI
MOVEA

Load Effective Address

move value or register must be at least 1 data register
value is -128 to -127 ANDl immediate value number
immediate value OR.BAV/L can't use address register
move to address register must be at least i data reoister

MULS
NOP
SWAP W

signed 16 bit multiplication

No Operation

exchange top and bottom 16 bits in data register

OR)
EOR.BArVTL

immediate value number
source must be a data register

EORI
NEGBAV/L

immediate value number
reverse the signTST.BAWL

SHIFTS -ONL
shift BAWL
shift. BAV/L

ASL

compare location or register to

NOT.BAV/L reverse O's and 1 s

f DATA REGISTERS
• 1 through «7.data register

data register(»t through *63),data register

CC<—

STORAGE
DS.BAV/L define storage (amount)

DC.BAWL detine constant

Pointer dc.l

Title deb my title'.0

Array del 0,0.0.0.0

DCB.BAV/L detine buffer (longth. value)

ASR same—> CC
LSL
LSR
ROL
ROR

CC<—
0—>CC
CC <===> high bit

bit <===> CC

AC'S TECH'

thiscommand requires Ihe handler location from "Output" to be
in register dl, the message or buffer location in d2and the length

of the text to be printed in d3. Any text must be stored in a byte

storage area (DC.B) and surrounded by single quotes; text is

usually followed by a comma and to indicate the end of text.

While "Write" does not check for a 0, the can be used to

determine text length. Often a ",10" is included after the text to

force a linefeed or jump to the next line, but be sure to count it as

a character string and include it in d3.

Let's look at Listing 1 inmoredetail. Asshortasitis,thiswill

be the format of most of the programs we'll write—define equates

and offsets, set-up. the main program, close-out, and data/

locations. It's really pretty easy to understand the general proce-

dure.

The first two offsets 1 used "OpenLibrary" and
"CloseLibrary" are both in the EXEC library; after their offset

values, I have included the information that must go in specific

registers for the routine to work. The next two offsets are DOS
routines and only "Write" requires information in specific regis-

ters. I then MOVEd the current starting location to a temporary
storage area called "stack," where it will remain until the end of

the program. The address of the library name 1 want to open is

stored inregisteral and the latest acceptable version—in thiscase

—is stored in dO. Since the routine I want is in the EXEC library

and that location is always in address 4, 1 stored a 4 in register a6.

The JSR (Jump to SubRoutine) will transfer the program to a

location -552 bytes from the EXEC address and open the DOS
library.

The result of the routine is to return the address of the DOS
library in register dO. Most routines return the information re-

quested in register dO. We'll store this address in a location called

"dosbase." But what if the program couldn't find the library? In

that case, registerdOwould contain a 0. Check for this with a BEQ
(Branch if EQual to 0). The result of the last operation or proce-

dure always gets stored in the CC (Condition Code) register. So

if a was returned instead of a library address, the BEQ will

branch to "done:".

Put the DOSlibrary address in a6andthencall the "Output"

routine saving theCLI console-handler location in "conhandler"

and ind 1
.
The location of the message is stored in d2 and its length

of 23 characters in d3. Then the DOS "Write" routine is called to

print the message; since C11RS{10) is part of the message, there

will .ilsobea linefeed and anything else to be printed will goon
the next line.

Next, Ihe DOS library location is stored in dO as a 32 bit binary

number. We want to print it, however, as a HEX number with

eight characters, each character being through 9 orA through P;

this corresponds to CHR$<#$30 through #$39 or #$41 through

#S46). Since each HEX number is four bits long <#$F16 = 1 11 1 ,>,

we need to convert each four-bit group into oneCHRS value and

put it in our buffer, and we'll need to do this eight times.

The ROL (ROtate l.eft) command will help us out here.

Whenever a byte, word, or long word is rotated, everything shifts

overone space in the given direction, but the bit that getsbumped
off goes around to the other end. Eight rotations would return a

byte to its original value. First we'll store our buffer address in at)

and cleard2and d3. Now rotate register dO #4 times to the left; the

four left-most bits (31 - 28) arc now the four right-most bits (3 - 0).

We want to keep using this value so copy it to register d2. Since

all we want are those four bits, AND the register with #$F and
everything else will be zeroes. D2 now contains a value from to

15. Convert this to itsCHRS value by adding #$30; if this value is

between #$30 and #$39 branch to "ok." If the value is greater

though, you'll have toadd #7 to get theCHRS value forA through

F. Now, store the string value at the location in register aO and
increase a0 by one byte. The "+" after (aO) will increase that

register by the size of the MOVE command. Since we've stored a

string value in the buffer, increase the length in d3 by 1; keep
doing this until d3 reaches 8. Use theCMP (CoMPare) command
to see if a value and a register are the same.

When the length reaches 8 we're almost ready to print the

string buffer. As before, put the "conhandler" location in dl, the

buffer address in d2, and the length plus #1 (we'll also print a

linefeed) in d3. Again, call the "Write" routine and whatever is in

the buffer gets printed as an eight-digit HEX number.

After the entire routine,you have toclose the library opened

at the beginning. "CloseLibrary" is an EXEC routine and requires

the library address to be in register al. Any library that has been

opened must be closed before ending the program. Again the

EXEC location is stored in register a6 followed by a JSR to the

"CloseLibrary" routine. This is followed by "done:". If the

"OpenLibrary" routine hadn't worked, theprogram would have

branched to here since therewas no opened library. The contents

of "stack" are restored to the SP register and the RTS returns to

CLI.

The EVENcommand will align uson even addresses so that
all of the following addresses will be acceptable. Three longword
locations are reserved ("stack," "dosbase," and "conhandler")

with DC.L and the eight byte buffer is reserved with DCB.B 8,0

(Define Constant Block), followed by a CHRS(tO) for a linefeed.

Aftersome more EVENs, space for the library name and message

are both reserved with DC.B. The message is followed by a

CHR$(10) and both are terminated with a 0.

After typing this program,save it as PR1NT_D0.ASM. Next,

assemble it with A68K PR1NT_D0.ASM and when its error-free,

blink it with BLINK PR1NT_DO.O. After saving the source code
and program to the PROGRAMS: disk, type PRINT,DO and

there's your message followed by the DOS library location. You
could use this program to print the contents of any register, not

just dO. In a future article we'll use some printer codes to add

italics, underline, etc.

A68K is very versatile. All ofmy programs are written with

lower-case printing and that is acceptable. If you forget the S

(Short), 1 (Immediate), or A (Address register), A68K will usuallv

add it to the command for you. But try to get intothe habit of

writing the best program you can and use A68K only to correct

mistakes and assemble.

IS THE FUTURE
In the next article I'll show you how to write some macros

that will make assembly even easier. We'll also teach our Amiga
how to multiply and divide using fractionsand even get it to talk

to us! Future articles will discuss graphics as we explore the

Mandelbrot/Julia Sets and work our way through arrays. Then

it's on to Menus and Gadgets. I would keep re-reading the

glossary ofcommands at the end of this articleand add yourown
notes and comments to it.

Vol.2, Num. 1 (01991

Finally, then is no easy way to debug your program. 1/ the

problem isn't obvious, sel It aside fora while thencomebackand
try again. You could use PRINT.DO lo check the contents of
various registers at different times in the program. Usually vour
error will turn out to be some simple, dumb mistake and you
won't believe that you didn't think of it earner. I try to write the

entire program first in Basic and then convert portions of it to
as-iembly Always save \ our program and changes before tmng
them It you have any questions about these articles you may
write to me through the magazine.

Listing One

iLISTIW !

open! :t
i iry -«.*.

: -
•-

tmm
iocs

output jnone

aova.l sp. stack :save the Stack Pointer
aovea .

,

-

lea

oveq 1

;op«r. 1

Mae :save the addiess

.-COuld:

noVM.i :»ove address to a<

routput
'

tndiet

; here. Coo

nove.l losg: ;"
:

1 (MQ

raion

wy address
"

I

•' 1 ; and d3

1 .., . .

I

capl.b •SJa.di

bcs.s ok

let a-f

.•store in buffer

1 byt

Il,d9 IM d)

18, A3 ; reached 6 yet?
hne.B acre .'branch :(not

DOVC.l conhandler.dl
. e location

nove.l Ibuffei ;buffer location
•ddq. h 11.<U : adjust for linefeed
38r ;pnnt buffer-linefeed

:dos library lor
- •

, ;exec library location

ry(a61 .•close dos library
done:

ove.l ;:eturn Stack Pointer
rts to CLI
ever.

stack
!--'j-.

.'library location

.-output file location

;hex buffer

dos dc .b 'dos. library' .

md
:

What's the best source offreely redistributable

assembly langauge source code?

Fred Fish Disks!!!

from Your Number One Freely Redistributable Disk Source...

Amazing Computing!

Call 1-800-345-3360

AC'S TECH™

Speeding Up The Drawing Process

Programming

the Amiga's GUI' in C—Part IV
' Graphical User Interface

Intuition's Border Function

Due to popularrequest, thisseries, whichwasoriginall) intended to last only four

issues, is being extended. I thank those readers who have mailed in letten. of support. I also

encourage others who would like to read about certain aspects of the Amiga's high-level

operating system to make their requests known

This issue contains a pleasant new tu ist Somewhere in this texl you will (ind a

small programming challenge, a puzzle if you will. The first five readers to best solve the

puzzle as described will win a one year subscription (or rcnew.il) ol/lCs TECH Magazine

Mail entries to:

Paul Castonguav

P.O. Box 505

Everett, MA 02149

I have added this new feature for the purpose ol promoting more "Programming
as a Hobby" on the Amiga. That's right, some people bought their Amiga* to have fun

programming it. VVhv not? Compared to other platforms, it is a programmer's paradise

In tins issue jfOU Will find:

1. A Discussion of Intuition* high-level inn- drawing function, DrawBorttert I.

2. Two implementations of Rosettes using OrawBorderi).

3. A discussion of Intuition'* tow level texl rendering function. Text! I.

i of Intuition's high leivl text rendering function, PrintTTcxH).4. A discussion of U

The example programs in this issue all use the programming shell that we have

developed over thecourseof the last three articles l-'or your convenience, a copy of it has been

placed in each exampledirectory, along wit ha make file (Imkfile). It you make modifications

to the programs you can conveniently re-compile bv entering I MK on the AmigaDOS
command line, or by double-clicking the "Build" icon on the WorkBench.

In this article, I use the term "line drawing" to mean a graphic image that is

constructed of straight linesdrawn be twivn anv number of defined points. In a future article

I will discuss another kind of graphic image, one that is defined directly hv bitplane data

With the last issue vou began drawing some simple image-- using the Amiga's

primitive functions VVntel'ixel(), Movef). and Drawl) These are probably the most often

USCd graphic (unctions on the Amiga for creating line drawings Writel'ivelf) illuminate-

by Paul Castonguay

Vol. 2, Num. 1 ©1991

Individual pixelson the screen, Movc<) places the graphic cursor (or
drawing point) at any desired location, and Draw() connects two
points with a straight line. To create complex drawings using these
functions, you write a series of instructions that mimic how you
would produce the same thing yourself using pencil and paper.

Speeding L'p the Drawing Process

Often ihe points ot a drawing are based on some equation
and require floating point arithmetic for their calculation, a task that
ismore time consuming than Integerarithmetic. In some cases we cm
Overcome mil slowness by Using a programming trick: storing the
calculated, pixel coordinate value* of all the points in a drawing in an
integer array. I like to call this array the points-array. Once that is

done, the Amiga's graphic functions can render the drawing at any
time by using these values directly, without having to perform any
further floating point calculations.

A good example where this concept can be used to an
advantage is in thedrawingof a rosette, which is buOl upby drawing
a large number of straight lines betweensome smallernumber ot pre-
defined points, arranged at equal distances around the circumference
ofa circle, A 23-point rosette consists ofsome 253 lines Drawing all

those lines using the original equations from which the points were
defined, along with some reasonably adequate scaling functions,
would require over 2000 floating point calculations. Instead we Can
calculate the pixel numbers of those 23 pointsonceand storethem in
an integer array. Then the repetitive invocations of the Drawl)

function, which produces the actual lines of the rosette, can use those
pre-calculated values directly.

A version of the rosette program is reproduced for you this

month on the magazine disk, in the directory Rosettel. Observant
readers will notice that I have added a macro definition, POINTS, to
allow you to conveniently change the number of points in the
drawing. I have also increased the size of the point-array
(Rosette Points), to allow you to more conveniently draw rosettes
having different point sizes. Now, compare the operating speed of

that program with the one in the director)' called RosetteO. That
difference in speed is due to the fact that the one in RosetteO is

performing floating point calculations (or every line that it draws.
while the other is using the above programming concept.

Intuition 's High Uvel Drawing Function

Intuition's high level, line drawing function, called
DrawBordert),can produce line drawings using thissame concept of
Muring pre-calculated pixels valuesman array. It renders bv drawing
straight tinesbetween points stored in the array sequentially, that is.

in tandem

As with most high-level operations in Intuition, there is a
general operational theme to follow when using DrawBorderf,):

1. Declare one or more Border structures to contain the Spedfil I

tions of your drawing, ihings like its color, how many point-- it

has, ...etc. I like to call this the description structure
2. Store the pre-calculated pixel numbers representing all the

points in your drawing m an array such that drawing straight

lines between them sequentially will reproduce it This may
require thai some points be stored a multiple number of rimes
at different positions in the array. I call this array the Border-
data-array, to discriminate it from the one we used earlier in our
rosette example. The Border-data-array must be located m chip
RAM. ,i special section of memory that is addressable by the
Amiga's graphic co-processor chips.

3. Link all structures and their respective Border-data- arrays
together.

4. Invoke the DrawBorderl > function.

I Ins general plan is a bit more complicated than using the
primitivi M and Draw|) functions direct

I \ However, it has
certain structural advantages, depending on exactly what kind ol
drawing you want to produce, and it can render complex drawings
verj fast I might also add at this point that the above operational
theme is similar to that used in another Intuition, high-level function
that I will discuss today, FnnllTexK >

The Border (Description) Structure

The template definition for the Border structure is m the lite

<intuition/intuition h>. I reproduce it below without its comments:

I

SHOPT LvftEdge;
SHORT Toj .

ram
E BarkPen;

UBYTE OrawModv:
BYTE C
SHORT "XY;
Btmct Bo:

I

LeftEdge and TopEdge refer to the position of the drawing,
measured in pixels from those edges ofits graphic window, ill have
more to say about this later FrontPen is the color register (pen
number) that you wish to use. There is no need to call SetAPen{), as
with the primitive graphics functions. Also, DrawBordert) dins no!
affect the current setting of SelAPen(

)

BackPcn is currently unused by the DrawBorderl) function.

There are two ways that DrawBorder() can render draw-
mi;-- I he first is called IAMI I his term means two things First thai
the drawing will be reproduced using one color per Border struct ure.
as specified in the Front Pen member, and second, that the drawing
will overwrite ,m\ previously drawn graphic images

This method effeclueh blasts your image down on the
m teen, obliterating everything in its path. Note mat IAM I does not
restrict you to only one color per drawing. Multiple colored drawings
are rendered by building up multiple Border, graphic Structures, as
you will soon see.

The second way that DrawBorderl l renders drawings is

called COMPLEMENT. In this mode the color is determined not by
FrontPen, but by the binary complement of the drawing surface Foi
example, if you are drawing on an eight color, blank screen, meaning
that all pixelsarecolor0, then your image will be drawn in the bitwise
complement of 0, which is color 7 However—and this is the interest

ingpart—ifyourdrawing overlaps any portions of previouslydrawn
images or text, then those related pixels will be replaced, not by color
7. but by whatever color is their bitwise complement The following
chart lists bitwise complement colors for an eight-color screen.

Color Rtgittcr Binary Bltwltt C<*q CCHPLtXEVT Color

c

| 1
i

i !1 ioi 1 oio

i •

The COMPLEMENT dntWirtg mode has the interesting

property that it allows you to erase your image by drawing it agalnl
But this is an advanced concept lor now, let's stick to the easier- to-

use IAMI DrawMode.
The count member of the Border description structure

refers to thenumber of points (coordinate pairs) stored in the Border-
data -array It represent- the number of pointsbetween whichstraight

AC'S TECH,M

lines will be sequentially drawn. This member is type BYTE and

therefore cannot store values greater than 235. Thus 255 is the

maximum number of points that the I>rawBorder() function can

render from a single Border structure. Again, this is not a limitation

since larger drawings can be produced by using multiple Border,

graphic structures. The XY member is a pointer to the drawing's

Border-data-array. In a minute, you will see two method* for declar-

ing lh.it array so thai it properly resides In chip RAM.
The last member of the border description structure is l

pointer to another Border structure You use this member when you

want to render complex drawings consisting of more that one Border

structure, drawings that have more than one color, that consist of

several discontiguous sets oi tines, or that have more than 254 lines

In our lirst example, we will use only onestructure, in which case this

member js assigned a NULL.

Be : ivrtat 1 [SHORT •(Ail 1, HEHFCHIF I HEHF_CLEAftl i

Whether your programsarecomplex graphics, or data base

applications, allocating memory dynamically is the most efficient

way to design them. They will use only as much memory as they

need, when they need it. In addition, you will be able to allocate chip

memory from within different functions, not just globally as inSAS/
C's chip data type I low-ever, this method does have the disadvan-

tage that it is slightly more difficult to use. Your programs can often

develop some difficult-to-dentify bugs. Simple errors can produce

system crashes.Save your work often!

The following code declares some memory and assigns to

it thesame data as the above rectangle example. Note that I used 5*2

tospecifytheamountof memory, emphasizing that I need enough for

5 coordinate pairs

The Border-Data Array

The purpose of ihis array is to store the pre-calculated pixel

numbers of the various points ofyourdrawing in such an order thai

drawing straight lines between them sequentially will reproduce the

drawing Theamy itself must be accessible to the Amiga's graphic

co-processor chips, and therefore must be declared in chip RAM.
SAS/C makes that easy to do with their platform specific data type

called chip.

SHORT chip KyD*;.. 0. 0.
100. D,

100, 50.

['he above array is declared in chip RAM M^i is initialized

to the coordinates of a rectangle that is 100 pixels wide, and 50 pixels

high.The data is in pixel numbers measured from the reference point

defined in the LeftEdge and TopEdge members of the above Border

structure. The SAS/C chip data type must be declared in the global

section of your program, outside main() You don't have to worry

about returning this memory to the operating system before your

program terminates, the compiler takescare of that for vou automati-

cally.

A Dynamic Solution

The above method is called static in the sense that it is fixed

for only one si/e of drawing, in this case one having four lines

Suppose you don't know, m advance, exactly how many lines are in

vour drawing. Quick, tell how many are ina 27-point rosette?Do you

sec what I mean? You could of course write code to calculate and

report that answer easily enough, but in C you are not allowed to

declare an array of variable si/e using the above notation. So even

though your program is able to calculate the number of lines it needs

to draw, it cannot declare .1 Bordcr-data-arrav of the proper size todo

so.

You could solve the above dilemma by declaring your

Border data-array large enough to handle any drawing that comes

along, but that would be impractical.Complex drawing are rendered

by multiple Border, graphic structures, and their exact characteristics

are impossible to predict in advance.

The solution is to allocate memory dynamicallv. using

>(. s AllocMem(> function. It requires two arguments, the number
otln les that you need, which can becalculated by your program, and

a macro specifying the kind of memory needed, in this case

MEMF.CHIP Youcanalso use the convenient macro MEMF.CLEAR
to initialize the arrav to zero.

SHORT 'HyOiti

SHOPT 'pti - SJU-i

HyD»U i SHORT *)All(KHMilb*2'BltMt{5H0RTI . HEMF.CHIP 1 HOF.CUAfl I

;

ptr • Ky&ita:

• point 1 *t

• peine 3 '

Mi

This method of declaring the Border-data -array also gives

vou the responsibility of returning the memory to the operating

system before vour program terminates, using exec's FreeMemf)

function

Linking Data to the Description Structure

For Intuition to properly execute the DrawBorder() func-

tion, the Border-data-array must be linked to the Border description

structure representing the drawing. This is easily done with an

assignment instruction. Below I give you a hierarchical diagram of

what I have done so far

MyData array
(in chip ram)

Border Structure

LeftEdge
TopEdge
Front Pen
DrawMode
Count
>:v

=

=

= 1

JAM]
= 5

NextBorder = NULL

Vol. 2. Num. 1 ©1991

The Drawborderi) Function

After performingall the aboveground work, the only thing
left to do is invoke the DrawBorderf) function itself:

DrawBordcr(BV_rp. fcMyBordar. x. y):

This function renders the rectangle by drawing straight

lines between the points stored in the array M\ ll.it. i It does this

sequentially, as you would yourself if you were drawing while not
being allowed to lift your pencil off the paper. To produce a closed
image the first and last points must coincide.

The first argument in the DrawBorder(> function is th<-

forever ubiquitous RastPort pointer. The system needs it to deter-

mine where you want your drawing rendered, in this case the
window opened by your programming shell. The second argument
is the address of the Border structure that describes the drawing you
want rendered. The system will read from it your specifications, as
well as the actual data points that you have previously linked to it via

its XY pointer. The last two arguments are an offset coordinate pair

that will get added to the position of every point in your drawing.

Position Control

You have three levels of control for the positions of points
in your drawing: the LeftEdge and TopEdge members of the Border
structure, the individual coordinates in the Border-data-array, and
finally the offset coordinates of the DrawBorderf) function

LeftEdge andTopEdge represent a coordinate pair that act
as a reference for all points controlled by that structure. This level of
control is used when constructing multiple Border, graphic struc-

tures, toadjust the relative positionsof different parts of thedrawing.
The second level of control is the pixel data itself, which represents
positions relative to the above LeftEdge and TopEdge. Finally the

DrawBorderf
) offset value allows you to make one final adjustment

to the position of the entire drawing. This is especially useful for

adjusting the position of multiple Border, graphic images.asyou will

soon see.

First Border Example

This first example draws theabove-mentioned rectangle. It

is a single Border structure drawing; thus its NextBorder member is

assigned a NULL The example is on the magazine disk in the
directory called First_Border. 1 list it below:

'* firit&oidti.c

Paul Caatooguay October 1991
• iinti

- :-(include <lMun .

(include <»tdlo.h>
include catd
(include <aitl

• Include "pioto/in'.-.

(include <proio/at4pniei.h>
(include •pfoio'doi.h-

I Ida 'Shell. h'

SHOT chip HyDalaU I 0. 0.

100. 0.

100. SO.

0.

truet Border HyBorder *
(

• mom LeCtHge
SB M TopMp

.'AMI.
'• BYTE Count

KyData. ." SHOST 'tl
/• itiuct border 'HextBordei •/

VOID Micont argc, char ••r^vili;

VOlDwemUm «gc. char «rflv!|l
I

struct Screen •By.sereen:
viewport *«y_ivp;

trace Window *By_*indow:
itiuct RaitFort *-.

mom .

.

lt(;Open.SheIlH^_icreen, l»y_avp. l»y_wlnda». l«y_rp, •UtEHICHB'M

printfrftotilea* inOpen_Shel;
DeleyUOOli
e*iURnwu.

r>... •/

forii • 0; i < S; ...

Dra-Boiderlay.rp. fcKyBotdei. i«ic. '

S«tAP«H*y_rp. II;

Hovetay.rp, 230, 10):

T«tl«y_rp. -Beetanfllw mine, DraiA:

DelaylSOO);

'• "•• •-: n- ;..*

Clo«e_She;ii»y_windcw. *,_icreer.ri

This is a static solution. The Border-data-array is declared
globally using SAS/C's chip data type. Notice that the drawing's
Border structure is also declared globally, although strictly speaking
that was not necessary. I did so in order to keep the two related

declarations close together in the listing. The program contains a loop
that draws several instances of the rectangle using DrawBorderf }'s

offset feature. What you have here is fivedrawings produced from a
single Border, graphic structure by multiple invocations of the
DrawBorderf) function, each at a different position on the screen.

The nextexample.Second_Border.c. demonstrates thesame
program except that the Border-data-array is declared dynamically
and private to main(). Note that two new finclude's were needed:
<cxec/memory.h> which contains the macro definition for

MEMF_CHIP. and <proto/exec.h> which contains the ANSI proto-
type definitions of the AllocMemf) and FreeMeml) functions

/• Second_Bo[d«r.c

Paul Castonguay October. I9!l

- intuit.on.hi
1 '- «e*ec'*e*ory.h>
(include <»tdio.h>
(include <«tdlib.fi.

(include auth.h>
(include •proto/lntulticn.h>
•include <proto/graphici.h,>
' it <proto/do*.h>
•include <proto/ex*c.b>

•

unclad* •Shell. ft-

VOIDittiniint argc, char •argvll):

VOID Minimi atge. char 'argv[|l

truct Screen **y_icre«n;

'"i.lvp;
ltruct Window ••y.windowi

AC'sTECH 1 ^

HyBorder(OJ

LeftEdge
TopEdge
FrontPen
DrawMode
Count
XV

=
=

-

= JAM1
= 5

Next Border NULI

MyBorder[l)

Left Edge -

TopEdge 3 40
FrontPen = 2

DrawMode = JAM1
Count = 5

XY

MyDota array
(in chip ram)

NextBorder hull

J MyBorder[2]

Left Edge = 160
TopEdge = 80
Front Pen = 3

DrawMode = JAH1
Count = 5

XY

1

"'
0,

100, 0,

100, 50,

0, 50.

0, 0.

NextBorder = NULL

i

*•• (last structure in list points to NULL!

Rosettes Using DrawBordeH)

The DrawBorderf) function is not limited to simple draw-
ings. Let me demonstrate by using it to render a rosette. Recall that I

introduced the rosette early in this series, promising to use it laid to

demonstrate different programming concepts. It's more interesting

than rectangles, don't you think?

In order to make the program capable of efficiently draw-
ing rosettes of different point sizes, I will declare whatever memory
it needs dynamically. The larger the rosette, the more memory it will

use for its graphic data structures. Also you will see that the amount
of memory used depends on how ingeniously we design the pro-

gram.

Now, exactly how can we design a bunch of linked Border
structures to represent a rosette? Perhaps we could divide the rosette

into groups of lines having some similar property? Well, that could
work in principle. A natural division might be in groups that connect
to one common point Each group would represent a fan pattern of
lines. The trouble is, DrawBorderf) draws lines in tandem, connect-
ing points that are stored in a Border-data-array sequentially. That's
great for drawing closed figures, like polygons, but not very efficient

for fan patterns. The computer would have to trace back over each
line that it drew in order to get back to their common point before
drawing the next one. That's too time consuming.

One answer is to divide the rosette up into individual lines,

making a separate Border structure for each. That's an awful lot of

Border structures, but the Amiga can handle il easily All these
structures must be linked together and each one linked to four data
values (two points, each having horizontal and vertical coordinates)
stored in chip RAM. Sound complicated? It's easier than you think.

andagood demonstration of Intuition's high level poweraswell. The
solution is on disk in the directory Roserte2 I explain its internal

operation below.

The first order olbusini'ss is [ouikui.ile thenumber of lin.'s

in the rosette. To do that we use the same double nested loop thai
normally generates it. except that here we only increment a line

counter:

nuabei c

I

ford
for I

j

lire_coun' -

•

You can put a print instruction after this loop and confirm
that the exact number of lines in a 23-poinl rosette is 253 Next we
allocate memory for our graphic structures

Allocate Boid.--
'" •''

Allocate Boir;.

Koo*lte_Bord«r
AllocM< - irdrn

.

The first declaration, Rosette_L)ala, will be used tostorc our
pixels numbers. It is one contiguous length of chip memory, long
enough to store 4 four integers per line of the rosette The second
memory declaration is lor thearray of Border structures, one tor each
line. This one need not be in chip RAM. Each Border structure will

have to point to a different spot in the previously declared length of

chip RAM Rosette_Data.

Now we need to calculate the pixel numbers for the points
of the rosette. We use a point-array for this, for the same reason that

we did in our earlier rosette examples, to keep the number of floating

point calculations in our program as low as possible. Note that this is

not lh«' data that DrawBorderf) will use dinitly. but rather the data
that we will use to fill upchip memory with thedata that DrawBorderi
) will use.a

>.- Calculate and store point

RadtAjv:
Pad (At.

|

Mtri«i *

We then assign data to chip memory using these pre-

calculati'd values, thus:

tor
I

l.oop througr. assigning end point!

itai

•Data_ptr..
'Data.;
•Data_ptr--

AC'S TECH™

IttWt KastPort 'j'.rpf

SHORT *KyDit* • HULL I

SHORT 'p-r - WJtL;

SHOUT 1;

struct Border MyBorder;

l(l!OD«n_Sb»llfWy_»crMn, kay.svp. Uv_t.iftdow. iay.ip, •LACEHIGHB'l

i

•Probl«M in Optn. I
-

MtyllOQIi

r«l code rt«n fieie

MyDiU = iSHOfll iXlloc-m

100 i

100;

SO;

•

MyBortfer.LeiiEdQ*

HyBordet .TopEdc*

HyBordei .FroniPen
l«y8otd*r.B*MPtn
HyBoid>f.DrawKoa>

MyBordet .Count
HyBoiitaf.xr

1;

• 0:

' *yD*:a:

Oraw9ord*r(ay_ip. fcHyBoid*;. -

Delay1500):

FrttMMlMyData, S'^'iijeo! iSHOflTl I;

*•• Com ibfll b>

Clote_Shell{*r_wiftdow, ffy_nrr**r.h

Exactly what method you use to declare your array will

depend on the structure of your program. If you are drawing some-
thing whose definition is known at the time you are writing the

program, and which is used in several places wilhin your program,

it may be more convenient for you to use the global version. How-
ever, if you must rely on internal calculations to define points in your

drawing, you will need to use the dynamic method But even if your
drawing iscompleti-ly known ahead of time, you may still need to use

the dynamic method. Any program that is reasonably complex

should be structured into functions and have its graphic structures

made local, in order that you can come to grips with its overall

complexity. Program structure is not a strict rule that you must follow

to get your programs working, but a feature that you should use to

make them maintainable. Authors of unstructured programs lead

lonely lives because no one can understand their work.

Drawings in Multiple Colors

If you have a drawing that consists of a single border

structure and you want to render it in different colors.and at different

locations on the screen, you have a number of choices. Vou could

change the Front Pen member of the Border description structure

before every invocation of DrawBorderf), which might then render

it using different offset coordinates. Or, you could create several

Border structures, each having the same U-ftEdge and TopEdge
coordinates, pointing to the same Border-data-array, but having

different Front Pen definitions. Then each invocation of DrawBorderf

) would specify the address of a different Border structure, as well as

different offset coordinates of course. An easy way to do that is to

declare an array of Border structures, as in example Third _Border.c

on the magazine disk. I reproduce the important parts below

*

HULL)

rd« KyBord*rlSI:

KyEfctt 'S*

MyOKa i

0;

. , Qi

. IQOi

Cj

-50;
0;

•ptr--

0;

KyBarterUl-Xt Mop

. . .

HyftorterUi.&«*Pen
-

HyBottetK**tBord«r

.1H0RT). MWJMIP I KOtf.CUM);

• difteient color (or etcfi '/

• Of

S;

> HyDa'.t;

HULL;

,_:p. MtyBorderUJ. i<
•:

Note that in each case the DrawBordcr() function renders

a drawing represented by a different Border structure, but having the

same pixel data. The Border structures are not linked.

Linked Border Structures

Another way to display colored rectangles is to declare

several Border structures, each one having its own FrontPen color,M
well as its own LeftEdge and TopEdge coordinates, and then link

them all together using the NextBorder member. This is your first

example of a drawing represented by a multiple Border, graphic

Structure. The structures are linked sequentially by having the

NextBordermember of each point to the Border structure of another,

with the last one pointing to NULL. This is the old linked list Idea thai

you learn about in any computer-science data-structures course.

The big difference in this example is that only a single

invocation of DrawBorder() is required to render all five rectangles

See example Fourth,Border.c on the magazine disk, which draws

two complete drawings, 10 rectangles, using two invocations of

DrawBorderf), each using different offset coordinates. Below I give

a partial hierarchical diagram of the structure which represents the

drawing (next page):

Vol. 2, Num. 1 ©1991

The Data^ptr pointer jumps along Ihe contiguous length of
chipmemory assigning pi<co! coordinate*.that represent end points or

all the lines in (he roselle The last piece ot work is the assignment and
linkage of the Border structures

Assign and link border
I' >• and Bon)>

RoMt t«_Bo rder_p *

for u • Q:

Ro8«tte_Botdei

. . .

Rolette

Pose:.' - -XY

1 ine_ec .

• JAM1;

I

-

Roaette_Bo:

_Bord*r_pt r- .Next border

We use a pointer, Kosette_Border_ptr, to jump along the

section ofmemory representing the structures, assigningmembers as

we go along. Each XY member is linked to the pixel data of its

respective line in chip memory, four integers representingtwo coor-

dinateson the3Cmfl ITie Count member of each Border structure is

only 2. meaning th.it each one will draw a single line between two
points The last Border structure ismade to point to NUL1 prepresent-

ing the end of the linked list.

Rosette Border[0] Rosette Data

Edge
TopEdge
Front Pen
DrawMode
Count
xv

5

JAM1
2

'.: XI ; : dei NULL

toset to_Border [

1

DrawMode
Count
XY

=

=

= 5
= JAM1
= 2 Integers

NextBorder - NULL

#ROB©tte_Border[2

LeftEdge =

TopEdge =

Front Pen = 5
DrawMode AMI
Count * 2

XY
Integers

::••- Bordei NtJI L

i

•• (last structure in list points to NULL!

All that done, we can now invoke a single DrawBorder() instruction:

Dram!' i 01. 0. Ol j

... and presto, our rosette gets drawn. Like magic.

Perhaps you are thinking that all of this is too complicated
to be useful. To draw a single rosette? Perhaps. But what if you
wanted to draw many rosettes, perhaps at different places on the

screen. Once you haveconstructed the graphic structures, a drawing

can be rendered at any time by a single Draw Border!) instruction.

Example Rosette3on disk does that First it scales the screen such thai

the origin is m the center of the top left quadrant of the s, reen

ifdScale
I

Cloie_;

Then the graphic structures are constructed as before. Finally four

different Rosettes are rendered like so:

:«*• h

.0. FYW.C
Bra— i ll r ^_f». thw i . .8]-fxiO.0l.

I wanted to use the Fx() and Fyl) scaling functions to make
(he placement of each rosette easier to visualize. To do that. 1 had to

remember that the offset argument of DrawBorder() is added, not to

my Cartesian coordinates, but lo the lop left corner of (he window in

which my drawing is being rendered. The graphic data structures

were set up such that the center of the rosette is at Cartesian coordi-

na tes<0,0>, which corresponds to pixel coordinates Fx(O.O), Fy(O.O).To
shift the rosette to a different position requires that I subtract those

Fx(0.0| and Fy(O.O) terms from each new location

Rosettes are only an example that I chose to use because

the] are slightly more interesting than rectangles. The purpose ol all

this is lohelpyou learn how louse the DrawBorderf (function. I really

don't know what kind of drawing you will want to render. But
whatever il is. you will probably want to build it up in a structured

manner, using a different Border structure tor each section of the

drawing

Another Implementation of Rosette

Although the above example is certainly a good one for

showing a complex graphic structure, it does not make most efficient

use of memory. The problem has todo with the repetition of coordi-

nate \ alues in the Border-data-arravs You see, each line is defined by
two end points and consequently each Border structure points to a

four-element array. But often the beginning point of one line is the

same as the end point of another. One would think thai different

Border structures could share the data for those common points. But

the above algorithm does not take advantage of that. To design a

program thatdoes.wecoulddivide the linesof the rosette into groups
of contiguous lines, that is. lines that consist ol several segments
drawn in tandem Then points that are common to two segments
would not have to be repeated.

Suppose you start at one point on the rosette and draw a line

to another immediately adjacent one. Now, moving in the same
direction draw another line, (his time not to the next immediately

adjacent but to the one alter that That is, skip a point. Continuing.

Vol. 2. Num. 1 ©1991

draw mother line, this time skipping two points, then another, this

tim.' skipping three... .etc.The result will bea kind ofspiral thattraces
3 unique path through the rosette I low many such steps can be taken
by ,1 single line? In a 23-poinl rosette, only 11 Alter that the line is M
longer unique and will start drawing certain lines for thesecond time.

However.if you go back tothe point where that lim- started and move
over one point, you can begin another similar. 1

1 -segment unique
line. And, how many timescan you do this? You guessed it, 23 times'

Thus you can complete the entire rosette by drawing 23 contiguous
lines, each one consisting of 1 1 sections

The example program in the directory called Rosette2A
solves the rosette using this new technique lt> graphic structure

consists of 23 linked Border structures, each rendering a unique 1 1 -

segment path through the rosette. The example demonstrates hOM
ingenious methods can be used to reduce the si/e of the graphic
structures. It also demonstrates the perils of dvn.inuc programming.
that 3 right, the example is programmed dynamically and will

render rosettes of anv size up to 49 points simply bv changing the

macro POINTS.
Here is the memory allocation for the Border_data amy

_ im (SHORT •

WW

\S e pick a point on the rosette, line_set, then increment by
ever increasing step sizes until II line segments are completed
(line COUnt/POINTS). Notice how I use the modulus operator, %, to
wrap around through values in the Rosette,Pomt> amy. We then
increment Iine_sel and st.irt the next contiguous 1

1 -segment line

That done, we must now link the 23 Border structures to

each other, and to their respective Border-data-arrays.

*

turn v

poll
. Ron •

-ie_Bord« J

We multiply the line_count by 2, not 4, because this method
takes advantage ot using common points to draw contiguous lines

But watch out tor the trap. You must add 23 extra points (POINTS)
because there ire 23 separate line sets, each having 2 end points which
are not shared. Fail to see that and you will crash your machine

1 lere is the memory allocation for the Border structures

-.--.:
•

RoBette_B< :

'

' Bolder

Next we must assign data to the Border_daia ami)
,

KtCjMU] " B<:

*

AtBign tim

0««j>tr« - In.'

pointE •

tt*p

i •• itip:

*D**.*ji!r.

D«tJ_ptf-

in thu Sordf:

-

point»..;

Ittp-;

. . .

•

'

Each XY pointer is linked to its respective line set. But wail
a minute. Each line sei consists of 1 1 segments and of course two end
points, That makes 12 points, not 11. Note that at this point in the
program, the variable "points" does not equal 11. It equals 12, cvi, t!\

what we need. It became 12 when it exceeded the upper limit of the
previous do loop. Tricky, eh? Each NextBorder is linked to the next

Border structure, except tor the last one which is assigned a NULL.
I'he result of all this is a graphic structure that occupies better than
halt the memory of the previous example, yet produces the same
drawing.

Programming Challenge

Is there a wav to program the rosette using a single Border
structure >

^ es there i>. bill it has.in upper limit That is, there isa limit

In the point size ol l rosette that can be programmed using a single

Border structure. Can you find it?

Think about it, you have to design a single Border structure

to draw a contiguous line (hat produces a complete rosette. 1 did not

Say that the line could not double up on itself, it can. But to produce
the largest rosette possible, and remain within the upper limit of the
Count member of the Border structure, it will have to draw in the

most efficient way, Actually Rosette2A isa good hint onhow todo it,

Youi solution must be programmed dynamically, to make most
nt use of memory, and it must be generalized to accept any

POIN I si/e up to its upper limit. You may use the simple method of

defining a macro for the 1*01X1 size, as I did in this article To test

your program, simply change the macro and re-compi!e. If your
programming skills are up to it, you may use command line argu-
ments, or.my other legitimate form of input, to enter different POINT
Bizi s |(,it vour solution must indeed produce a complete rosette for

each POINT si/e up to its upper limit. It must also correctly handle the

case when the point size is ten) high Sum
. no svstem crashes are

allowed.

Cft\f luck!

AC'sTECH^'

The directory oiled RosetteZB contains one last example,

which 15 equivalent to the one in Rosette2A except that its Count
member has been reduced by 1 Many interesting, artistil patterns

can be discovered by making small modifications to the types of

example programs we have been using

line Animation

Don't fall into the trap of thinking that DrawBorder(} is

useful only for static drawings. It can be used for animations .is well

A good example is the Line_Animation program front two issues ago

You remember that one, don't you? It drew a line that left a trail as it

moved around the screen. I'erhaps you were not too impressed with
it Alter .ill. there is, i similar one on theSAS/C examples disk that is

10 times taster Hut wait, there is a big difference. Run the SAS/C
example and you will see that as the trail is removed (by drawing the

last line in the background color) it overwrites portions of the

remainder of the trail I know it's moving so fast you can hardly see
it, but by pressing the right mouse button you will temporarily stop
it and be able to see the effect I am talking about Mv version does not

do that. By relying on the fast drawing speed of DrawBorder)), I was
able to redraw all lines in the pattern every time the last one was
removed. The effect is a much smoother animation.

1 promised in that earlier issue that I would use the

Une_Animation example in future articles to teach certain program-
ming concepts, and I will, just as I did this issue with the rosette. It's

just a little too soon yet for animation. In case vou did not see the

Line_ Animation program, you will find a compiled version of it Oil

disk this issue.

Rendering Texi

You have seen mc slip in without explanation a few text

instructions in all the examples ot this series It i> now tune to sav a

few words about that. Asm the case of rendering line drawings, there

aretwoways to render text on the Amiga, a primitiveway and a high-

level way.

I'rimitiveTexH) Function

The Text() function is pari of the Amiga's graphs -. Iibrarv.

which is automatically opened for vou by the programming shell

Here is an example of its use

S«tAP«n(my_;;
Hove(my_rp. 0. 10);

y_rp, 'Hi nil

Initially you must select a pen register, and move the

graphic cursor (drawing point) to the place on the screen where you
want the text to appear The Text(> function itself requires three

arguments. The first is the RastPort pointer, representing the window
in which you want the text rendered The second is the text itself, or

a pointer to a NULL terminate.! length ot memory containing it-

more about that in a minute. The last argument is the number ol

characters in the string.

Baseline ofa Font

The word font refers to thecharactenstics of the letters us.\l

by the computer for displaying text on the screen. TheAmiga has ten

different fonts, with names like topaz, diamond, ruby, ... etc. They .ill

come in a variety of si/es In this article 1 will discuss only one. the

Amiga's default font called TOPAZ.EIGI I IV

To place text at precise locations on the screen, you must
havesome knowledge about the font you are using. Specifically you
miisi know the location of its baseline, the point in its graphic

definition from which it will be rendered; its graphic reference point
if you will. In previous examples I have used the number 10 as a
vertical coordinate in the Move!) function when I wanted to place

tevl near the top of the screen. I chose that number to guarantee that

the text would appear properly within the limits of the window,
while at the same time not over-complicate the appearance of mv
code. But thai was not quite correct. To place text properly, 1 should
have used the font's baseline detinition.

The height of a font is measured in scan lines starting from
the top of the letters. The Amiga's default font, TOPAZ_EIGHTYJ is

defined in the header file <intuition/prelerences.h> to be eight lines

high, numbered trom l) to ? In addition, us baseline is defined (in a
different place) tobeonelineup from the bottom, or line number 6.

But ofcourse one should never go around using absolute numbers for

such things 1 he user could easily change the default font, in which
.a-ethecurrentfont'sbaseline would be different and the portioning

of the graphic cursor in your program wrong The solution to all this

is to read the baseline of the current font Irom the system It is kept in

tlie Rastl'ort structure, in a member called TxBaseline.

Below 1 show my above example modified to do this:

"

Now 1 need never worry about the text accidentally o\ er

shooting the upper edge of the window. The exad top line of the

letters will always coincide with the exad top ot the window I he
user can change the system font and my program will comply by
using the baseline of his selection.

Building Your Strings

Remember that unlike BASIC, there are no real string

variables in C. You have to build them up yourself by declaring

character arrays and then copying texl into them PageU68ol vow
SAS/C documentation lists four different functions thai voucan use
to do this, each one having itsown advantages. I like to use steepW)

tor a tew reasons. First, its operation is always limited to some fixed

number of characters that must be specified Thai protects vou from

the disaster (possible system crash) ol accidental!} COpJ ing strings

that are not properly \L I I terminated Second, when StCCpyt I

encounters,! NLfl L character in the source string, it fills the remain-

der Ol the destination string with NULLS, up to the length you
specify. Third, it guarantees that the List character of the destination

string is a NULL character, even it the souree string is (accidentally)

longer than the destination Finally, it returns the length of the string

copied, convenient for use in the Amiga's lexr) > rendering function,

Here is an example

1

char %,

Jtov*iP, _

1 must subtract 1 fromsize becauseslccpyl 1 reports length
including the terminating NULL character. Of course vou may have
your own legitimate reasons for wanting to use another one of SAS/
(. S string copying functions, or even one of your own design

Vol. 2, Num. 1 < 1991

Using SprintF(

)

You are probably wondering how lo go about displaying
numeric values inlo a graphic window. Intuition is not like a CLI
window; you cannol use the normal Standard C print(() instruction.

In fact, 1 1 your program executes a printff), its text goes, not to your
programming shell window, but to the CLI (or AmigaDOS Shell)

window (rom which you launched the program, what is called

standard I/O.

A convenient function to use for getting numeric values
into a graphics window is sprintff). It does everything printf() does,
except that it sends the text to a previously declared char array,

instead of stdio. It even returns the length of the formatted string

produced. From there it can be easily used by Amiga's Text()

function.

Intuition s High Level Text Function

Just as there exists a high-level Intuition, line-drawing
function, there also exists an equivalent text-rendering one, called

PrintIText(). Here is its operational theme:

1. Declare one or more IntuiText structures to contain the specifica-

tions of the text you want rendered: its color, position, font, ... etc.

1 like to call this the description structure.

2. Store the actual text you want rendered in a NULL terminated
character artav.

3. Link all structures and their respective text-arrays together.

4. Invoke the PrintIText() function.

Depending on exactly what kind of text you want rendered,
there may be advantages to using PnntIText() over the more primi-
tive Texrf >.

,ng. 'An approximation o! PI it I'

The sprintf)) function allows you to use all the formatting
conventions of Standard C to build strings that you can then render
into any graphics window.

TextAttr Structure

The programming shell window of these articles does not
automatically support scrolling and carriage returns like a CLI or
Am igaDOSShell window. You have to keep track of where todisplay
successive lines of text yourself. The minimum that you need toknow
is the height of thecurrent font. That, afterall, is what determineshow
many lines of text can appear on the screen, and how they should be
spaced for best appearance. Font height can be read from the system

by using tho AskFonif) function in conjunction with a TextAttr (text

attribute) structure

The TextAttr structure is defined in the <graphics/text.h>
header file thus:

struct TextAttr

sntfT*
UHORO
UBYTE
UHVTG

UtOMJ
C«L,YSiMJ
la.Style;
la.Flatjs;

1;

/• name o(the font »/

.nsic lont sty I

'" font preferences and (lays •/

AskFont() is a function in the Amiga's graphics library. It

can be used to obtain the above information about the current font. It

requires that you previously declare a TextAttr structure in which to

report the information.

struct TextAttr def»ult_Attr;
AskFont <my_rp, tdefajlt_--

You can then read the height of the current font from that structure:

Iine_neiQht - doIault_Attr .ia_YSi;e • 2;

Some Background

All text consists of two parts, the letters themselves, called

the foreground, and the background area over which they appear.
For example, inTOPAZ_EIGHTY, each character is formed on an 8x8
pixel grid by illuminating certain pixels, while .il the same time
leaving certain others off. The pixels that are illuminated form the
actual character and are called the foreground. Those that are left off

are called the background
TheAmiga can render text in four different ways, described

by its different DrawModes. The first is called (AMI, trie same term
that yousaw earlier in DrawBorderf). In JAMI,mode text is rendered
such that the foreground of each character over-writes any previ-

ously drawn graphics or text, but the background does not. Thus the

computer is rendering in one color only, the foreground color. A
second mode, called JAM2, renders text in such a way that both
foreground and background over-write previously rendered graph-
ics or text. Thus the computer is drawing in two colors, the fore-

ground color and the background color. A third mode, called

COMPLEMENT, renders text such that all foreground pixels are

replaced by their binary complement. The last mode, called

INVERSVID, reverses the roles of the foreground and background
colors.

IntuiText Description Structure

The template definition for the IntuiText structure is in the

file <intuition/intuition.h>. I reproduce it below without its com-
ments:

struct
I

Ent 'i: 7<-j".

UBYTE Front Pen;
UBYTE BachPen;
UBYTE DcawModo:
SHORT LettEdge;
SHORT TopEdge;
Struct TextAttr 'ITextFont;
UBYTE 'ITcxt;
struct IntuiText 'NextTcxt;

I assign linejieight to be two scan lines greater that the

actual font in order that the text appears properly spaced on the

screen. Two scan line-- work out pretty well for TOPAZ-EIGHTY.
See the example St ringvc, in the directory Display_Text, on

the magazine disk. It shows you how to use a variable, called

line„number, to keep track of where to render successive lines of text

to the screen. The example also contains the previously mentioned
sprintff) function, reporting a floating point value to screen.

FrontPen is set to whatever color register you want for the

foreground of the text. BackPen is set for the background. DrawMode
is settoeitherJAMUAM2,COMFLEMENT.or INVERSVID. LeftEdge
and TopFdge determine the position of the text in the window
TopEdge refers to the position of the top scan line of the text, not to

the baseline as was the case with the Textf) function. The ITextFont

AC'S TECH'"

member points to the structure which describes the font you want to

use, or NULL if you want the system's default font. I will leave this

NULL today. IText is a pointer to a NULL terminated contiguous

section of memory containing the actual string that you want dis-

played. Finally NextText points to another IntuiText structure > on

use this last member u your text consists ol many strings, each one
represented by a different IntuiText structure. Below I give a hierar-

chical drawing of a properly constructed IntuiText structure that

displays a single string message at the very top left corner of the

window. It uses the system's default font, color register 1 for fore-

ground, and color registerO for background Its NextTexl member is

assigned a NULL, meaning that I have only one string.

Profit :•:

backPan
m .-V >
Left Edge
Toptd-je
IText Font
ITex;
Next Text

- JAM2

-

i NULL Help av. I'm 01 .

NULL

The actual rendering is accomplished by the PnntlTe\t(I function;

•xtloy^rp. iMy_IToxr
. X.

... which requires tour arguments, the RastPort pointer, the address

of IntuiText description structure, and an ottset coordinate pair that

has a similar purpose to its equivalent in Draw border(>.

TheexamplelText cinlhedirectory DisplayJ Text,demon-
strates one way of using Intuition's PrintlTextf.) function to display

an entire screen of text It opens an interlace screen, enough room for

50 lines in TOPAZ.EIGHTY. It then declares a 50-dement array of

IntuiText structure-, one tor each line on the screen, and a character

array called my_stnng(50|lH0], enough memory space for 80 charac-

ters on each line. (79 actually, remember the 'Ml' character?) The
IntuiText >tructuros are then linked together and each one made l.«

point to its own 80-character section of memory. The TopEdge
member of each IntuiText structure is asMgned a different vertical

position, thus placing each line at its correct location on the -* reen

••

-_?»! i I
Dr«*W* i

Hy.PaqtUS.Utitdje

NyJWfl.

0;

. ; • l| - 11M

..-
-

•

Hy_Pa9*ii).HexiTe*i • WJUi I* i«»: wtgwi
I

Text can be copied into the character array using stccpy().

It's easy to keep track of things because the element numbers in the

character array correspond to lines on the screen. Finally the entire

structure is rendered using a single PrintFTextf) instruction It \ ou
run the example, please do not try to read the text on the screen; it

doesn't stay there long enough. Theexampleisintended only toshow
you how PrintlTexti) can be used. It also shows how to clear the

screen and the 50x80 character array in order to display new text

nu-ance, n.
a delicate degree

of difference.
1 Y|"--ilit»i; quality is In the <lct.nl>, (fetalis often omitted for Ion*
list* of feature*. Detail* such as separate hyphens {-), en-dashe*.

().

Mid errwlaabes I Detail* inch aa ligature* and kerns. Details

such as vertical justification and a full range of diatrical marks Hut

then i- no loojpa any need to compromise- you can have all of the
features ami all of the quality with

AmigaT^
Many product* allow you to import PostScript graphic! from any
source AmifaTtfjX allow* you to preview thou grapbli ion the screen

and prinl them to any prino-r even -lot-matrix printers. Some pro-

grams allow you to use PostScript foni-«. Ainignl]--N l<t- you use

both Type j and hinted Type 1 outline fonts, on the screen and to

any printer Some packa*.". .i]|ov, importing IFF/ILBM imager but

none provide the variety of dithering and filtering

with AmigalbX

Multi-thousand page document* present no difficulties, even on a one
megabyte Amiga Matheitiatii and l.il.l.--. .-in- tvpeset with unparal-

leled quality If you are serious about putting words on paper, write

for your free demo disk. Move up to the cpiality of AinigaTi^X

VI
Radical Eye

^ Software
Box 2081 • Stanford, CA 94300 • BIX: rudical.cyo

Circle 102 on RmSk Service c*<a

Forsome simple text oriented program! thus may be all the

screen design that yon need. It is easy to set up, uses high level

language concepts, and renders tad extreme!) fast Naturally it

should be structured into sever.il functions before making it part of

any application

Sexl Issue

This last example demonstrates a shortcoming of all my
programming example* so far, that thev remain on screen for only a

predetermined period of time I design them that wav m order to ktvp

them simple at these early stages However, in the next issue I will

present the missing link that will allow us to control programs using

the mouse or keyboard, the Amiga's message system.

1 will also present the Amiga's disk based font system and how you

can use any one of them in your programs,

Paul Catougwiu loves to hearfrom readers'. Please send your comments to

Paul Castongauy. P.O. Box 505, Everett, MA 02149. Additiomli

can write to Pau'lc/oACs TECH, P.O Box 2140. Fall Rnvr. MA 02722-

2140. We will forward your tetter* to Paul.

Z

Vol. 2. Num. 1 ©1991

Recently, we were ordered by
U.S. military officials to explain to

their complete satisfaction just

what a SuperSub is (as we all

know, it's the best subscription

deal around for Amiga users,

since it includes both Amazing
Computing zndACs GUIDE).

».v.v;(

I hen, a prominent Congressman
wired to ask us ifwe would testify

before a top-secret subcommittee

as to whether or not we can pro-

duce a single prototype SuperSub

for less than $500 million (is this

guy kidding? - a one-year

SuperSub costs just $36 - and we
can produce one for anybody!).

.Y:r.V,Y.V

rinally, a gentleman called us

from Kennebunkport and told us

to read his lips, but we told him
we couldn't, because we don't

have a picturephone.

And then he ordered a SuperSub.

AG's SuperSub -

It's Right For You!

call 1-800-345-3360

List of Advertisers

Please use a Reader service card to contact those

advertisers who have sparked your interest. Adver-

tisers want to hear trom you. This is the best way
they have ot determining the Amiga community's

interests and needs. Take a moment now to con-

tact the companies with products you want to lean

more about. And. if you decide to contact a
advertiser directly, please tell them you saw them in

AC TECH^MIGA

Advertiser Page
Reader Service

Number

Central Coast Software CIV 104

Delph Noetic Systems 31 101

Great Valley Products CM 105

Great Valley Products Cll 105

Memory Management 93 103

Radical Eye Software 63 102

Do you have a story idea

for ACs TECH?

We want to know!

(Call oi write the Editor)

AC'sTECH™

The Development of a
Ray Tracer

Part Two: The Implementation

by Bruno Costa

In the first part of this article, some of Ihe essential ray-

tracing concepts were presented, including a dcscriplion of a

simple illumination model. This second part is dedicated toshow

the practical usage of that theory, with many commented ex-

cerpts of code from a real ray tracer (called "ray"), that is included

on disk with the full source code in C. Some references will be

made to the first pari of the article, and, although not strictly

net essary, it is recommended thatyou try to understand that part

before reading on. If you are not specifically interested in ray

tracing, it may be worthwhile to examine just the object orienta-

tion sections.

The General Structure

I he outline of the basic ray-tracing algorithm presented in

the previous issue revealed how simple it can be. It was men-

tioned that what distinguishes a good ray tracer are the special

features II has, besides the almost standard ray-tracing kernel.

This is one ot the reasons why ray tracers are not merely a few

hundred lines long. Another important factor is the code neces-

sary for each kind of object, the various data types (likecolors and

vectors) and the output device d riven

Since ray tracing needs to know some features of each kind

of object it is supposed to render—how to calculate an intercep-

tion of the object with a ray, for instance—additional code is

needed to support each class of objects. These classes of objects

are often called primitives, because they can be combined to

produce much more complex objects

Somelibrariesand routines are used by all other parts of the

program to help in manipulating 3D vectors, colors, lists of

objects, parse command line options and handle errors—they

comprise the support .ode Also important are the routines that

communicate with the output devices (like an Intuition HAM
screen, an I IT file, or a 24-bit frame buffer), which guaranteesome
device limitations or restrictionsand also perform any necessary

steps to control the hardware or software involved.

With these classifications in mind, a good organization for

.1 m\ tracer could be the one given by figure I The user sees

simply a front-end, called "ray," that controls the ray-tracing

kernel. To do the real ray tracing, the kernel needs to call each

primitive todelerminesome of its features, and the output device

driver to show or store the resulting picture. The various small

packages in the support code are called by all other parts ol the

program, specially to manipulate some common data types.

An important characteristic, depicted in Figure 1 , is theway
the modules comnuini..i:e Between each pair ot communicating

modules (or groups) is an appropriate interface, lor instance, the

usercommunicates with the program front-end through the user

interface. Each interface can usually be described by a well-

defined, limited set of function calls (with applicable parameters)

and data types. This is the case of all the interlaces in Figure 1

,

except for the user interface, that is obviously described instead

by a very complex collection of commands, options, procedures,

and even the input and output devices involved.

A question that is naturally raised is how Joes one extend

the abilities of this rav tracer, particularly how does one add a

new primitive? This is a very important question indeed, since

after Ihe ray tracer is relatively stable, the most frequent modifi-

cations madeon it will be to add support for new primitives. It is

desirable thai this operation is simple enough that even someone
who is not completely acquainted with the program i- able to do

it, ideally minimizing or even removing the need to modify the

program itself. Well, this is ihe subject of the next section.

Object Orientation Prelude

If you have been programming for a while— in fact, even if

vou haven't—certainly the words "object oriented" mean some-

thing lo you (maybe "yes, they mean something 1 don't under-

stand"!). "Object oriented" is definitely one of the most fashion-

able terms in computer science nowadays—we have object-

oriented languages, compilers, operating systems, databases,

user interfaces, and even ray tracers. If you say your program or

product is "object oriented," people look at you differently,

respectfully (even if the word does not express much to them)

Well, what does all this object orientation stuff mean, anyway? A
complete answer is not easy, but what most people imply when

they sav something is object oriented, is that it is well structured,

divided in modules,and encapsulated (didn't helpmuch,did it?).

As you are probably aware, modularizationand structures

are two of the classical tools that a programmer has in order to

make his program more manageable. By dividing the program in

small routines, each with its own well defined purpose, one can

write big (and also small) programs that tend lo become easier to

fix and maintain. If you have ever written a medium-sized

program in iheearly microcomputerBASIC'S—eitherC-M. Atari.

TRS-80 or Apple—you surely know what 1 am talking about.

Most modern languages support an additional level of

modularization, by allowing you to group related functions m a

single module. Trie parts of a module that are visible outside

make up the module interface, i.e., the entry points thai can be

called from outside. Structures allow you lo collect related data in

a --ingle place, building more complex data types from simpler

ones.

Vol. 2. Num. 1 ©1991

Figure One How !he modules communicate

User

UWWKi

ray

<«n»miMl»

Driver
| Kernel

|

O0*Cttn*ftsc*

Ob)ect1 1 Object?
|

... ObjeciN[

Vector
1

Color
|

List I

We can take the C language as ,1 convenient example. In C,
(unctions and variables can begrouped in files, and any functions
or global variables preceded by the keyword static are not visible
outside of the source file thev are in. Usual! v. the protois pes of the
externally visible functions (defining the name of the function, its

return value, and the parameter types and their order), as well as
the data types handled by the functions in that module are
defined in a header file (name ending in ".h").

Typically, a structure is used to define a complex data type,

thai will be manipulated using a set of functions. You can think
Of a list, defined by a simple structure and manipulated by the
routines addtail, addhead, removehead and removetail, for in-

stance. So, it is relatively clear that there exists a relationship
between the data type and the functions able to manipulate it. It

would be nice to have an extra level of grouping that allowed us
to define a data type completely, in a single place, including both
the data structureand the functions that understandand manipu-
late it Ideally, only the functions in the definition of the type
would be able to read or modify the data structure fields di-

rectly everyone else would have to call these functionstodo II

This would allow the real data structure organization to change
at will—as long as the manipulation functions are modified
accordingly—without the callers ever noticing it. Well, programs
that use this extra level of modularization are usually called
object-oriented programs

1 have purposefully avoided the use of the object-orienta-

tion jargon, so that uninitiated readers could understand the
preceding discussion. The data types defined by a module with
an internal data structure and some manipulation functions are

generally called objects. The manipulation functions are called

methods. The methods and the data type define in fact an object

class, and each individual object belonging to that class is called
an object instance. For example, the object class BALL might
define objects that can, according tosome kind of semantics, roll,

stop, or kick (the three methods that can be applied to BALLS).
Both a small red ball and a big blue ball are distinct instances of
BALL, and both can be rolled, stopped, or kicked using the same
methods defined by the BALL class

There are additional concepts that are important to achieve
the exceptional level of encapsulation that truly object-oriented
programs have, most of which are tricky to implement using a

language that is not object oriented (like C). Probably the most
important of them is inheritance, the ability ofone class of objects
to inherit properties of another class. This allows one class that is

a particularization of another to use all the methods that were
defined for the more general one. A good example is a class

SHAPE, with the methods rotate, translate, and scale, and sub-

classes that inherit the properties of a SHAPE: CIRCLE and
SQUARE. Thus, besides using the methods particular to the
CIRCLE class (set radius, for instance), it is also possible to apply
.i translation, for instance, to an object of the classCIRCLE —after
all, CIRCLES are SHAPEs, aren't they?

Practical Object Orientation

As you can notice by the previous example, object-oriented
techniques are particularly suitable to describe graphical objects,

and that is precisely what a ray tracer needs to do. A ray tracer
manipulates graphic primitives, like spheres and polygons, to

which standard methods like intercept and normal areapplied to

obtain the necessan. information to render a picture. Each kind of
primitive has some very specific attributes, mainly related to its

geometric shape, besides those that arecommon to all primitives
(like color and surface properties). This is a typical case of
inheritance: each kind of primitive is a class that inherits the

attributes and methods of a general OBJECT class.

You should be convinced by now that using object-oriented
techniques to write a ray tracer seems like a good idea. A fully

object-oriented languagewould be the natural way to go, but is it

really required? Truly object-oriented languages are sometimes
too different from what you are used to, introduce some ineffi-

ciencies and are not widely available. Hmmm ... would it be
possible to implement some of the nice object-oriented ideas
using the language of choice of nine in 10 Amiga programmers?
With some restrictions, the answer is yes.

Since C is not an object-oriented language, there is a slight

overhead in using object-oriented techniques in a program. Due
to this small inconvenience, the only place where object orienta-
tion is used in "ray" is in the object interface, where it is successful
enough to make this overhead negligible—Y°u will notice why.
So, "ray" is not a fully object-oriented program, just likeC is not
really an object-oriented language.

In ray" there is a general class, called Object, that allows
every kind of primitive to be treated similarly. The ray tracer
kernel, for instance, deals only with Objects—it simply does not
know what kind of Object it is really rendering. This class sup-
ports all the methods necessary for a primitive to be ray traced,
although each particular kind extends an Object with attributes
particular toils geometry. AnObject in "ray" is defined in object.h
as:

typ«def et

i

' jde o_nodej
, o o_type;

i o_eolori
luai
it* j

where objtype is an enumerated type that lists all the
possible subclasses of Object:

-Y.

OBJ_S*UXBEH I- number of defined object

An Object thus contains: a node sub-structure to allow the
object to be linked to a list; an identifier of which type of object this
ms(.mv.v is; the color of this object; the illumination characteristics
of the surface of this object; and finally, a generic pointer to data
particular to the type of this object. You should notice that fields

in this structure, like color and illumination characteristics, are
attributes that every primitive, regardless of its particular type.

AC'S TECH'"

will inherit. The extension to the Object class is made through the

o_data generic pointer, to which each primitive can link any
special data it might need. For instance, in sphere.c the Sphere

type is defined as (basic types like real and Point are defined in

global.!.):

typedef itruct t

Point a_center;
real 9_radiiiB;

)
Sphere;

When a sphere is created, an Object and a Sphere structure
are allocated and initialized, and a pointer to the Sphere is placed

in the o_data field of the Object. No one—except the methods
defined in sphere.c - knows what is stored in theo_data field, i.e.,

no one knows that it points to a structure made up by a Point and
a real. This is information hiding: if, for any reasons, it is necessary

to change the Sphere structure, no one—except the methods
defined in sphere.c—will need to change.

This is how the attributes of the Object class and its sub-

classes are stored, and how inheritance works in "ray." More
important than that is how it is possible to have a consistent,

essentially primitive-independent way of accessing the crucial

characteristics of an object to be ray traced.

Attribute Manipulation

When an object is created, the fields in the Object structure,

and specially the data pointed to by the o_data field, are initial-

ized with default values. Since the value of these fields is what
effectively distinguishes two instances of a given class, there

must be a way to modify and retrieve them. Instances of the

Sphere class, for instance, are always created with center at the

origin, a radius of 1 and a diffuse white, non-reflective, non-

refractive surface.

It was mentioned that only the methods in the subclass

implementation know what is stored in the o_data field, and so,

only a method in the subclass can possibly modify these at-

tributes. Also, since there is no limit on the number of primitives

implemented nor in the number of attributes they support, the

process used to modify attributes must not depend on these.

We want the user to be able to modify the attributes of an
object in a controlled way, still keeping him unaware of what is

effectively stored in the structures. If, for any reasons, we need to

radically change the format or kind of data that is stored in the

object, we would like to be able to have the opportunity to map
user requests in the old format to the new one, and also hide the

internal fields that are meaningless to the user.

The obvious solution that meets most of the above criteria

is a pair of methods.aHrsft and attrgel, that are used to set and get

the values of attributes. The attribute that is to be read or modified

must be identified by a code, and this code is given by the

enumerated type attribute, defined in attributes.h as:

typed© f enum (

*tth_ehd.
• include "coeaaon.atr"
ATTR_CUSTOM,
include 'sphere. ati*

i nc 1 ude 'plane . at r

*

•include 'sky.atr'
ATTB.DUMHY

1 attribute;

Asis relatively obvious, this definition is not self-contained,

since most of it is included from external files. This is done to

make the addition of new primitives easier, reducing the number
of modifications required in attributes.h toone.A file like sphere.a tr

looks like (stuff deleted):

ATT!t_UST_BEGlN

SPHERE.CENTER . ATTP_CUSTOH.
SPHEBE.RADIUS.
SPHEBE_NUHATTB

ATTR_L1ST.EHD

whereATTR_LIST_BEG]NandATTR_LIST_ENDaremac-
ros defined in attributes.h. The attributes common to all primi-

tives are defined in common.atr.

Note that the first custom attribute of each primitive is

initialized to be ATTR_CUSTOM. This technique results in a

unique integer code for each attribute applicable to a given

primitive, but custom attribute identifiers of different kinds of

primitive may (and in fact they will) be equal, as is shown in

Figure 2. Note also that the last attribute of each primitive is

usually primirive_NUMATTR, and this will be exactly the num-
ber of useful attributes for that primitive. In a Sphere, for instance,

there are six attributes that can be used (SPHERE NUMATTR =

6): ATTR END, ATTR COLOR, ATTR.TEXTURE,
ATTRJLLUM, SPHERE_CENTER and SPHERE_RADIUS.

A question that is still remaining is how we will be able to

define a function to set an attribute of an object, if the type of the

attribute is not known. A good solution is to use the ANSI C
variable arguments- passing facility.

Variable Arguments

One of the best known functions in the C standard library

is printfQ. There is something special about printf, besides the

frequency that it is used in normal C programs: the fact that a

variablenumber of arguments can be passed toil. Ifyou have ever
tried to write a printf-like function, you might have stumbled on
a shortcoming of many programming languages: most of them
do not give you the means to write functions or create modules
that work just like the standard library ones do. There is simply

no way, in standard Pascal (is there really a standard?), for

instance, to write a function that can receive a variable number of

arguments (like Write() and ReadQ do) or an argument of any

type (like New() does). This kind of contradiction prevents the

use of the language in question to write its own standard library

(forcing the use of another language, usually assembly), reduces

the portability of the language implementation and frustrates

programmers trying to write code that looks like the standard

they are used to.

One of the nicest—and also one of the least used—features

standardized by the ANSIC committee is the variable argument-

passing feature. It allows a routine to receive any number of

Figure Two Attributes

Ceo*
ATTR END

1 ATTR~COLOR
2 ATTR TEXTURE
3 ATTR ILLUM
4 ATTR^CUSTOM

MHMMat

SPHERE CENTER PLANE ORIGIN 1

PLANE~NORMAL
PLANE NUMATTR6

SPHERE RADIUS
SPHERE NUMATTR

Vol. 2, Num. 1 C01991

parameters of any lype, just like prinlf does, and to retrieve the
parameters from the stack in a standard way. independent of the
particular machine architecture. This feature is implemented asa
single typeand threemacros, defined in the include file stdarg.h:

void /a.list ii

Ib use it, you must declare a variable of type vajisl, that is

used to keep track of which parameter we are currently in. It is

initialized by a call to \ a start, that receives the last fixed param-
eter in ihe (unction. A call to va_end must be made after the
arguments have been used, in the same function that called Ihe
corresponding va start. To retrieve the current parameter and
advance to the next, va_arg should be used. It receives the r\peol
the parameter expected, and returns its value.

The best way to understand this feature is with a simple
example:

maxint im of

int maxint unt .

'

U
.

;

i.atg largs. intjj

There must be at least one fixed argument to initialize the
vajist, and the argument list in the prototype of the function
must be terminated by "..." to indicate that there is an unknown
number of arguments following. It is very important to keep in

mind that there is no way to know how many arguments, and of
which type, were really passed to your function, so you must
provide an alternateway to get this information, either implicit or
explicit. In the function above, the type of the arguments is

implicitly assumed to be integer, but the number of them must be
explicitly marked by the user by terminating the argument list

with a zero:

•
•

.
*

I* WPG.NC ! "/

In printf(), the number and type of the arguments must be
explicitly listed in the format string, telling the function the type
of each parameter, and the order they arc received The o'nlv

problem with this explicit user cooperation is that sometimes he/
she might write a format string that is incompatible with the

number or type of the arguments really passed, and ... POOF!—
the program doesn't work any more, usually with the most
bizarre effects.

I hese strange reactions from 'hv compute! RN doe to the

waj variable arguments are implemented in usual computer
architectures. Arguments are passed in the slack—roughly, a

memory area that grows either toward increasing or decreasing
addresses—one next to the other. A vajist variable is simply a

pointer to a place in that area, which va_arg moves by an amount
that is tin- size of the argument retrieved by it, so that it will be

always pointing to the next argument. If, for any reason, the type
of the argument passed to va_arg is wrong or the arguments have
just ended {and the function doesn't know), vajist will be point-
ing to the wrong place, usually an address that stores just gar-
bage, and the values returned from subsequent calls to va_arg
will be plain nonsense. You can imagine the rest.

You might have already guessed how variable arguments
can be used to implement the attrset and attrget methods. To set
an attribute, for instance, the method has to know which object is

to be modified, which attribute will be changed, and the new
value of the attribute. Only the type of the latter can vary,
depending on which attribute is being changed. Thus, somehow
there must be a way to associate each attribute identifier to its

type, so that themethod will knowwhich type toremove from the
stack. This connection is made through an array of types indexed
by the attribute identifier, that will be present in each primitive.

The possible types, defined in attributes.!*, are:

typedet mum
TYPE_INT,
TYPE_REAL.
TYPE_PTR,
TYPE_VOID

) ettrtype;
•

integer argument •/

real argument
pointer (address) •/

unused argumen>

The type array for the sphere is (from sphere.c):

internal attrtype stypestSPHEP£_NVKATTP| » (

TYPE_VOID. /• Alwayo begin with TYPE_VOID •/

attribute!

TYPE_PTR.
TYPE_PTR.
rvi r_r::~.

/ ATTR.COWR (Color -|

>• ATTR_TEXTURE (Texture •)
'• ATTP_1LUW (Ilium "I

• Private attributes
•

TYPE.PTR. /' SPHEPE_CEHTER (Point -I
TVPE_REAL /• SPHEPE_PADIUS

You should note that therearesix items in this array,one for

each of the six attributes that are valid for Spheres, and that they
are ordered just like in Figure 2.

Since we are using variable arguments, the attrset and
attrget methods can be designed so that they set or get more than
one attribute at a time. This is easily done by defining the
functions according to the following prototypes:

int attrset (Object *ob)

.

int attrget [Object 'obj.
...I
. . .)

Following the object to be manipulated there is a list of
attributes and their values, terminated by an ATTR_END, for
example:

Color L.O, 1.0. I .01 j

attrset (sph.
SPHERE.RADIUS. 2.5.
ATTR..C0LOR. Iwhite.

ATTP^EMDl

{

In the case of the attrget method, the arguments are pointers
to the variables in which the value of the attributes will be stored;

Color color;
real r;
attrget (sph.

SPHER E.RADIUS, ir.
A7TR_COLOR. icolot.

ATTP_END»

;

ACS TECH 1"

L<K»kinj» .it the array wiih the types for the sphere, you can

determine the type oi tin- value thai goes after each one »i the

attributes, e g . after a SPI H Ki RADII S there must be a real an
ATTR_COLOR must be followed by .1 Color pointer, and so on.

Don't forget that in the case ol attrgel all values are pointers, in

such .1 way that values can be returned m the area pointed to by

them. To better understand this, you may associate attrset and

attrgel to print! and scanf, respectively.

Methodology

A> already mentioned, the two fundamental methods that

the Object class musl implement are intercept and normal. Both

of them depend entire!) on the kind of object in question: the

Objectdasssunpl) doesn't know rtowtocalculateaninterceptjon

el .1 normal without knowing thai theobject is in tact a sphereor

a plane, for Instance, and this will be the case ot most methods in

this ray tracer (well, currently all of them). So, to implement this,

the intercept method in the Object class could have been written

as something like:

sphere_prop that is globally visible, and it contains pointers to the

functions that implement those methods, winch are rtol directly

visible outside, From sphere.i (stutl deleted):

nonut.

'

'

'

There are. however, better wavs to implement the above,

thai Will group all the information related to each kind of primi-

tive in a single place, instead ofscattering it through many parts

ol the program Each SUbcla96 declares all the properties it sup-

ports 111 a structure that is the onlv thing visible outside ol thai

subclass implementa turn I hisstructureisdelined in properties h

as:

voia '

The above structure declaration is the kind Ol thing that

really shocks v neophytes well, admittedly, even seasoned

programmers need to take a deep breath before trying to write

such a thing. A rough translation: each of the hrst seven lines

declare a pointer to a (unction, toCode that can be executed. The
fifth line, tor instance, declares ,1 field named op_intercept that

points to a function that accepts two parameters, an Object

pointer and a 1.me pointer,and returnsa real. A call to one of these

functions using the pointer looks like

*

•

In essence, each of the function pointers in the Properties

structure is a method, and each primitive declares .1 Properties

structurewhereeach field is filled with the appropriated function

that implements that method for that primitive In the sphere

class, for instance, there is ,1 Properties structure named

In this way, all the information on the methods tor each

primitive are grouped together, and easily accessible by the

Object class. Better yet. the Objed class ^w\ have an an.u ol

Properties directk indexed by the type ol the object, like in

object.c:

exivrn

fcsphpr«_prop.
t«,ky_i ;

' OBJ.i
fcpUn»_ptop /• OBJ_i'' '

This allows the intercept method of the Object class shown

berore to be rewritten m a more concise way, thai is also much
more efficient and independent of the currently implemented
primitive types:

*

Obviously* the methods pointed to bj the fields in the

Properties structure are in the code ot the primitive in question.

so thej know everything about it, including its geometry and

what kind of information is stored m the o_data field.

I el s get back to the definition ot the Properties structure.

There is one last field that was not yet mentioned, op_attrtv pe It

is simply a pointer toan array ot attribute types, exactly like the

one shown in the Variable Arguments sec turn You might still be
wondering what each of those methods in the structure does,and
why they are there. The methods .ire

Vol. 2. Num. 1 1991

op_create used lo create an instance of a primitive of a

particular type (allocales memory and initializes it).

op_destroy simpty destroys a given instance of a pnmilive.

freeing Ihe memory used.

op_normal returns Ihe normal of a primitive at a given point

(assumed to lie on the surface of the pnmitive).

op.color returns the color of an object at a given point (also

assumed to lie on the surface),

opjnlercept returns the interception of a given line, in parametnc
form, with an object

op_attrset sets each of the requested attnbutes of the object to

the corresponding value given.

op_attrget returns the value of each of the requested attnbutes

in the corresponding value pointer.

Each of the above has a corresponding method imple-
mented in the Object class, like the intercept method already
shown. If you look carefully in object.c, you will notice that all of
the methods implemented there simply forward the requests to
the appropriate subclasses that know how to handle them. You
might be thinking what may be gained by introducing functions
that do essentially nothing. I.ook at the following piece of code:

Object 'sphere, 'plane;
extern Line -ray; • Initialised elsewhere V
real tp. t«i

sphere create (08J_SPHEFE)

:

plane = create (OBJ_PLA.\<

tp • intercept (plane, ray);
ta intercept (sphere.
if (tp < to)
print* cplane la nearer- i;
else
print! ("aphore is nearer-);

destroy (plane);
destroy Ispherel;

It may look surprising, but the code above does work in
"ray," actually as a result of the object orientation techniques just
described.

The Ray Tracer Kernel

The ray tracer itself is quite simple, and it is completely
contained in the file ray.c. It is basically the algorithm presented
in the last issue, with additional functionstocompute the Whitted
illumination model (locaI()), the reflection contribution (reflect

0), the transmission contribution (transmit ()) and the shadows
(obscured ()>. A single ray is recursively traced by raytraceO and
illuminate(), and raydispatch() traces all the rays in a picture,
sending the results to the device driver through the routines
picture.c.

You will notice that the main() function in ray.c calls two
world manipulation functions, wbuild() and wdestroy(). These
functions are in input.c and are used to build a world (containing
all the features of the scene, including the objects and the lamps)
from a ray scene description input file. If you look carefully at the
code in input.c,you might observe that it depends not only on the
types of primitives currently implemented, but also on the at-
tributes they support. But wait! Isn't this exactly the kind of thing
we were trying to avoid by using object orientation? Er ... yes, but
you'll see why.

In this case, there were essentially three alternatives. The
first is the one currently implemented, where the knowledge of
the primitive types and their attributes is not completely con-
tained in the primitive implementation, making the addition of
other primitives somewhat harder.

The secondone would be to createan additional method for
every primitive, that would read its parameters from a given file.

In this way, the wbuild() routine, instead of reading each of the
values and passing them to the primitive, would send the entire
line to be processed by the primitive. Unfortunately, thismethod
would make the primitives dependent on the kind of modeling
interface in use (scene description file), and would make it

impractical to change the program to run under an Intuition
interface, for instance.

The third one would be to simply ignore input.c and use the
routines create)), destroy!), attrset(),'attrgetO and raytrace() to
model and render scenes directly. This is by far the cleaner and
simpler solution, but it introduces the drawback of needing
recompilation every time the scene is changed. Also, one execut-
able is needed for each scene, and, unless "ray" is made into a
shared library, the code for the ray tracer and the primitives will
be duplicated in each executable.

The initial idea was to support the programmatic interface
to model scenes, but it became somewhat awkward to use. The
scene description file was then created to provide an easier and
faster way to model scenes. With few changes, it is still possible
to use the programmatic interface, simply by discarding input.c
and writing two substitute routines wbuildf) to create all the
necessary objects, and wdcstroyO to destroy them. It may also be
possible, if carefully planned, to use the second solution in a way
that is less dependent on the kind of interface, mavbe creating a
method that maps a string to an integer ID (the string
"ATTR_COLOR" would be mapped to the number
ATTR_COLOR).

Foodfor Thought

The alternatives above and the idea of changing the inter-

face used to access "ray" create interesting possibilities of an
interactive version of the program or a ray tracing shared library
Although texturesarenot implemented, theco!orat() routinewas
designed specifically to support solid textures easily. Refraction
is not implemented, but the rest of the program is prepared to
handle it, and the basic theory was explained in the previous
issue. There are various illumination models out there, which
create truly realistic effects. Ray tracing time can be substantially
reducedby many existingacceleration techniques. New primitives
can be added easily (step-by-step procedure explained in
lemplate.c). and this fact alone can be the source of hours of
entertainment (and debugging!).

In brief, there are lots of things to be done. If you have the
time and the will to explore this package. I hope that you learn
about computer graphics and programming in general as much
as I did. Ifyou want to delve into more advanced algorithms, try
the bibliography listed in the last issue, and if you have any
problems with this implementation, you may try to reach me on
Internet as bruno@brlncc.bitnet or through AC's TECH. I hope
you have fun!

Acknowledgements

I would like to thank Gilberto Kamikawa for introducing
me to the Amiga and always providing all the material support.
Very special thanks go also to Lucia Darsa, who, besides devel-
oping this ray tracer with me (all the way from the start) and
providing indispensable support in the writing of this article,

helps making my life such a great pleasure.

AC'S TECH™

Disk Access
Made Easy!

by Dan Babcock

Floppy drive access is usually performed via the

trackdisk device module of the Operating system. Ttackdisk pro-

vides thesame consistent, high-level Interfaceasotherdevice drivers

in the system, and has been optimized internally for speed Given

lhst,tnen?fcusuallv no reason not to use trackdisk when multitasking

normally. Special non-multitasking applications must, however, re-

sort to programming the hardware directly. The purpose of this

articleistopreaent a set of easy-to-use routines for performingfloppy
access without the aid of the operating system.

Using the Routines

The disk I/O package (Listing 2) consists of six major

routines: Read, Write. MotorOft. Inquire. SeekZero, and

Restore) (eadPosition. Read and Write perform the actual disk opera-

tions MotorOff turns off all drive motors (Read and Write automati-

cally* turn them on), and deselects all drives Inquire tells you what

drives arc present in the system. Seek/ero sends all drives to track

zero, placing the drives al I known position so that seek operations

are performed correctly, while recording the previous track location

of the drives m the DlSK_OldTrack field of the DISK. Data Area

global data area. Seek/ero also does the favor of setting up the

relevant CIA data direction registers. Restorelleadl'osition steps the

heads ti> the DISK_01dTrack tracks, previously recorded by SeekZero.

The register inputs and outputs of these routines are summarized

below Note that there are absolutely no restrictions on any of the

parameters; for exjmple, the buffer pointer may point to an odd

address in fast RAM

Inputs

DO.L - length (bytes)

01 .L - offset from slart of d.sk (bytes)

D2.L - drive (0-3)

AOL - pointer to user buffer

Output

D7.L - error code (zero K no error)

Inputs

DO.L - length (bytes)

01 ,L - offsef from start of disk (bytes)

02 L - dnve (0-3)

AO.L - pointer to user buffer

NOTE: The wnte routine offers a verify option that may be enabled by

changing the VERIFYFLAG constant near the beginning of the listing.

Output

D7.L • error code (zero if no error)

Inquire

Output

DO.L • dnve map
•example: 5 (0101) means dnve and 2 are present.

Other Routines—

MotorOH:
SeekZero:

BestoreHeadPosition:

No Inputs or Outputs

Some set-up work is required before these routinesmay be

called. The DISK RawBuffor and DISK.DecodedBufier fields of

DlSK_DataArea must be set to point to free memory areas of size

14,716 bytes and 5,632 b) tes. respectively. The DISK_CurrentTrack

entries must agree with the physical position oleach drive; you must

call SeekZero or otherwise assure that that's the case. You should

normally alsocall Inquire to find out what drives are installed. After

completing this set-up. Read and Write may be called freely to

perform theactualjob. Read and Wnte make few assumptions about

the state of the machine, and take care not to drastically alter it. This

permits use in a wide variety of "hostile" environments

Drive Specifications

Almost everv veteran Amiga user has experienced the

frustrationofaprognun (usually a game) absolutely refusing to load.

When it comes to disk drives, playing fast and loose with the

manufacturer's specifications .ilmost assures that your program will

Vol. 2. Num. 1 ©1991

fail lo work properly on someone's machine. For your convenience,
Ihe most critical specifications are listed in Table 1 . In addition to head
stepping considerations, take into account variations in drive speed,
which appear at the programmer level as a variation in track length.

Write a gap of 1.660 byles to ensure that the track is completely-
erased, and plan for the gap to be that large when reading. That
translates toa read si/e of I4,7t6byles and a write size of 13,628 bytes.
The read size is one sector (1088 raw bytes) larger to ensure that 1

1

complete sectors are read. These numbers are used by trackdisk (and
these routines), and your application will work just as reliably as

trackdisk if you use them too.

Table One

Step rate -3ms'

Settle time 15ms
Post-write delay 2ms
Side select delay 1ms

"4ms when looking lor track zero

Inside the Routines -

Some key facts about the internal workings of the disk
routines will be mentioned here. First, the blitter is not used for

encoding or decoding. Using the blitter would speed things up, but
would make the routines less general purpose. As it is, decoding a
track takes about 16 milliseconds, and encoding a track takes about
68 milliseconds (on a 68000/68010 Amiga). The decoding time is

hardly noticeable, but the encoding lime makes writing seem a bit

sluggish. Secondly, the CIA timers are not used to implement the

necessary delays; rather, the delay is based on counting a certain

number of horizontal scan lines, at approximately 63 microseconds
each. This approach leaves the timers completely free for other
concurrent uses. As you can see, the design of the routines facilitates

a simple drop-in inclusion into almost any program, requiring very
little external support.

Taking Over Gracefully

For testing these routines in a normal (multitasking) envi-
ronment, it is desireable to take over floppy control functions from
the operating system. The OS-friendly method of doing so is to call

DR_GETUNIT in disk. resource. Once permission has been obtained,
our routines may directly access the disk hardware without fear of

interferencefromtheoperatingsvMem l >Iauirse. normal multitasking
rules must still be obeyed. Listing 1 shows a program that demon-
strates calling DR_CETL'MT before making use of the low level disk
I/O routines, and cleaning up afterwards.

This isNot theEnd-
The disk routinesarenot presented with the intent to be the

"last word" on disk routines. Rather, they are a very useful starting

point; you don't have to reinvent the wheel. You are encouraged to

make yourown special improvements, of course and,we hope, share
the result with everyone. I've already incorporated the disk routines

successfully into VBRMon (see last issue's article), and no doubt you
will find your own applications.

Recommended Reading -

Vie Hardware Reference Manual is the official guide to pro-
gramming the hardware, and should always be consulted first. The
standard Amiga disk format isdocumented in theRom Kernel Manual:
Libraries and Devices. 1 found Abacus's Amiga Disk Drives Inside and
Out to be quite helpful, though it contains many errors. Lastly,

Randell Jesup's "More on Low-Level Disk Access," published in

Commodore's AmigaMail, contains many very helpful tips.

About the Author

Dan Babcock is an electric*] engineering major at Pennsyl-
vania State University and an avid assembly programmer. Contact
him via Internet as d6b@ecl.psu.edu.

Listing One disks

idisk.i Package tor readiofl'-riting the standard trackdln forwt
ftlt the OS

jCopyiiaht icl 1991 by Din Bibcock

.•Access -he routine* u follow:

.for iPi

I

buffer

;fcoullna nase; Wiii»

;Ssm pareaeters as above.

;WTE: Error cod* r«uro-d id DLL - if ok, tin

.General errors

. ;
>.'".! :ii:v-'.i:

;Besd error*
: Sync

ISK_BadHeader

DISK_6*dajta

•qu

qu
•qa
an

:rori

DISKjiritePiotected equ
DISK_V«n(yErr« equ

.AdtJitiw-ai routines:

.-HotorQft - Turn oft all drive sotois

.-Inquire - Find out -hat drives are in the ryita*

Da drive sip in DO

;5eekZero - Send all drives co track wo
; BettoreMMdFosition - step driww to previous (before SetkZerol positli

vsiirrOH

- Ueer-Mttable parameters

equ 1 ;0ir.

.

dskpt

ira

eqa

BBC
dakpeh

iClobal data structure

clrso

DISK.DewdedBufter

DlS*L01dTracV

DISK_3ire

so.b

eo.l

so.:

so.b

soval

MCJ
'di*K. binary"

ACs TECH™

bt*.w

bra."

bra.w

bin

joffael D

Hilt* iOltttt 4

IfctorOtt ;c:

Inquire

Seek?*: .

teat irsHMdl .

DlSK_DaieArea:

dcb.b

dc.l

dc.l

dcb.fa

1

g

: -.el 2*

iRevflUl

iVKt; Ttin u a public value,

DISXJttwBufSiie equ

[o r* changed

1

<-,-

CldOPH •go S10I

ciabddrb ' SJOO

ciaaddra T.. S1101

(port ant d;ak parar«ter». »ut»ary:

D 1*01. ng for track zero.Step rate:)na. 1m <Ai

Settle tiae: 1S«
Post -write delay; 2&b

Side aelect dc

Read!

OVM.I dO-dS/eO

im ;
•O.dl

1*4 DISX_£lat*Xrealpc).e*

ove.l l_cuKoa,a4
ove.l iciabprb.at

Ort.l dl.di

add.' 00. d)

op.l H0113O.d3
bbi.l .Erm ;go it *

bar.b SelectDrive

aove.l fl.al

ove.l dO.di

:The ml of the re*d raw

laadtom:
JVW.l dl.dl
diva.* Ill.dl idJ.u li

'

aove.l d),dl

clr.w dl

IWp dl idi : byte OlfMI

bjr.b Seek

bit ReedTrackAndOecode

cst.l d7

bne.i .End

BOVt.t DtSILPKodtdl ' *

add.w d»,aC

Hb.H 'SUl.tM

ntg.w ji

add.l dl.dl

'.jnber of bytei that could be trarnfened fn
:D5.L • nuabei of bytea left in the entire Feed .'*!"*

OV.l dS.dl

been .finuhup :>
tab. 1 d4.d5
ove.l
Mr ,v.

•dd.l dO.al

bra. a »**«

FimthUp
ove.l

- ..,-;'.

Mi ';>*

aovea.l Mpl-.d

rti

ovtq
bra.

a

1

.End

bytei Li

isber in c; I

.Exits in SOOns if diak ready doein't yet set

avca.l
1 ;:; - D.dl
or.b

bclr tl, lali ;Botor on

bclr

-i

..

cap b

• ; check dl

Deq.i .13

ibri dO..LI
'' h

OOVee.l iepi..dO/dJ

rti

a.b

if either the
be* or the deitination u

OVfS, .

-;..: nu.d)
bec* Error

. let to 'jpc* 1

baei . set to lower

ove.b

1

IV. fe dJ.DISR.CurrentTrack(a^.dJ.-l
il.dJ

baet 11,1**1 if*l lower trackil

dl.dO

beq.a .SideSeleetCnly

.Steplm

del ay 1:

bhi.a

bclr

neg.b

Me'

aubq.b

brw.s

btr.b

Mr.b
bra.s

Ove -

; ; .i
-

aove.l

MVtq
bra. i

1,1**1

dO

I

tl.du

"<st itu*. ion

Bud

delay:

.End

l

.Error

dO. -tip!

I

delay

Vol.2, Num. 1 ©1991

*: ±yt
:

d*l*yli:

'I...,:.

xvc. 1

ovtq
bia.i

ovp.l
0OV«.W

delay

1

;£n-*i wicr. M91C dflay nusbet

push dl

ove.b vhpos:

CBp.t . . :

dbn
;*

;

; op dC

tM

SitMgi
r^vr

1

- .- .

Itl

1 ;clear syrtf<donc

ScanSynci

•Sync:

toundi

poi! •4

nve.l ::*»_*..--

idd.v 1

c«e.«*

btq.i

cap.L •2.a4

Wll.S

ro.r- 1

PCP •4
'•

op.w
bne.a •

nUq.i
bra.i .found

-i U
H -

Hn«Md3
:P«lorc 4 :«. tricK rnd

-

tar.b Seiftegi

sove.H 1

p»l 1 V

BOVe.B
_
iSKsr.

mat,

.

m.n •

ove.b
Mat 1

tae.i

rop.b

t*j.«

«nrtq

! -

.UotTlOV

I rt Hi..--.-

Kvcq
.

litlQ- .'

aovt.w 1 :cl««r .

.
< -

.

it 1

».:

Oa -

WOf.t
ove.l iSl.-J

noveq '

•

.SKLoopi

bar

we. a .tod

D<KOd«:

1

Ur

bat.i

i0ecod«

•ovm •

"!•: •

wonA

ove.l

nove.l

tat. a .CUtaEi

•oveo. 1

:> • .

-

noveq

:: - -

;D0 - 1-

BOV»..

ove.:

AC'sTECH'"

,-« Ul

rie

iar.l pointer to dattinaiion in *,0 - .ipUted

:<»u» in W

ajv*».

:

pom; 10.es

ove.l KHS55*
OVC.l

'. .

Mt.b Encode

ove.l dl.dO

bsr.b Encode

and.l *5H«5»%,d*
POVfM .

Til

EnrodeBlock:

Ji In «

-.. -

ncveq 1

itncedi add bil

puih *J

ovc.M 11512/4

KW1.I '

:.

.

ove.l -

Encode

libra

.Ebcmw *
-'!-

aove.w '

-
.<• .

;

.
-

Encode.

lusea dO.dl.dl.aO -

jkccumUtn

in 01

end.:

rni.l dO.dJ

<K,d2
ove.l
•da.;

'

Met
and.l

beq.s .Oil

'

ik

- -

-'.-

- V..L

tr.e.i

.... . .

.BeKtClock

but 16. da

Me. i .end

Mel 17. dO

bra.s endl

Hdi rti

EneodeAndViiteTrack:

; Enter with pointer to source del* in U
Enter «i aj.««

nd

EecLoopi

nvt* . . da-de/aO/aJ.-tapi

ove.l DIS»_Ba-- '

byte* 2 byte* for hardware Dug
BOve.l ISaaaaaeaa.dl 101410...

HVf,«
ove.l
dbre

Subq.l >l.a0 i rooD for ; e«ra bytea at the very

ovtq lll.dl ;nu*ber of lectors

ovaq 10.di ;>ector COi

ove.l ISaaaaaaaa. laOl

Mr.b Correct

addq.l 14. aO

ove.l ism*i<e«. iaO).

ovt.l ItftQOOOOO.dO

oveq 1

ove-t DISK_Cut rentTrack(a

-

nap d*

da.dO

nvi .

.

di.d*

1*1.1 IB.dt

Of.l

or.]

bar EncodeLoco. ;header

eve !

i

~-' *-

Mr ETiCodeLonfl :'0S recovery info*

dbre :m .

:

d(,d0

bar EncodeLong :header checksu*

ove.l aO.a) :aave raw data pointer

tddq . II, aO

bar EncodeBloca :er.:ode data block
ove.l
e»g a0,a3

Ml EncodeLoag :data block cnecksus

bar Correct

ove.l ai.aO

add].: 1

bum: .

;

'

bne.a :>C ;.::;

ove.w iSaaaa.iaOl

bar Correct ; extra word :o avoid har_-

iPbyiically write the data

bar Setftega

K I

bca.a

ove.w
.KoPreCoapi

ove.w
ove.w
ove.w
Mi
Mi

•60.DISK_Curr«ciiTreckta*,dl.wi

.KoPreCoBp :<

.
jdfcconutl .llfae pr

ilatl

•SOAK, dak !«r.

•S&m.dsklenleti WU1 approx. :!.628 Bytea

DISK.Mait

delay) .-post-write delay

irar

Mr
bar

ratiTOM
UMUMd

Vol. 2, Num. 1 ©1991

1

-

'

.

'

'

'

'

'

I

I

1

'

AC'sTECH rM

Seekloop:

III.

I

-: I rr,

but
beq.i

bclr

Met
-..«;

II.do

is. a;

dl.dO

.MM ,-•

raelect

•1.1*11 IHl ID *OUI* llOMCr tracks!

10,dl t* old track counter

and.:

OVOI.l

CoprHaa

napleopi

Mat
beq.a

addq.l

but
belt

Met
Mr
bra.i

.GDdStvpLoopT

add.l

aova.b

M«t

H.Ciaapial a* I

.EndStvpLoop

• i.d:

I0.<«4I

I0.U4) i«t*p Ke*d

I0.U41

d*l«y4

.StepUwp

,-cbeck track u

d2.di

dJ.UOl

dl.fa4> :- |
.
|

P0PT4V4

.:-; ..

addq.l

capb
bna.i

clr.l

Mr
aovw.l

m

11.44

II, dl

•

.SaakLoop

US)

delay!

*

l»P>..dO-d3-*0/a4-a6

IFCT vniran

rVerity trie integrity ol a raw tia-k

•rtOI code in 0', if there II an trios

BVM, 1 dQ/d2>d5'a2.

ove.l OISKJUwflulferlaS

aoveq •10.dl tl el teciora - 1

L/*a>t v*>
aove.1 ISSSSMHS.d]

m „_- f

bar ScanSync

tit.l d7

We.

i

bar.bm .

bar :*..>>....-., ihMMl .'..<..-

cap.l dO.d*

bne.i .Vtntroi .header error

bar Dteodatoog .data area checkiuar

anve.l dO.dl

ove.w •1024.1

bir.b Checkataaatorda igamrate data area trheckaua

OpJ dS.d4

bne.i .VeiErro! ;data arror

dbr* dJ..VerLoop

ted:

ovaa.l lapi..d0/d2-dVeZ

rti

.'eiEnor

oveq IDISK.VeulyEiioi.dT

bra.a .End

EH : t

CMcksuatfaidcr :

oveq 110. dO

OiackiiaHordi:

DO - ouaMr of longwords to cbecksu

>J - pointer to raw data - updated

M - S5SSHSS5

Exit with chtckfia In D5

ana.

.

evajq

on .

tor.l

ubq.w
ene-i

dO-dl.-upi

10. dS

(alL.dl

dl.dS

• !.«»

om.1 dO/dl'aO/a;

aavajq 1

op.l
bca.s

ove.l

bta) '

baq.i

Wf.ll

ove.l
'

bna.s ,U
aova.l dO.dl

and.w

aove.w

floveq •

cap.l dl.dO

bca.a
aovea.l

.

aovaa.l

sovaa.l
- >r*q •sic.d:

add.l

aub.l

or,.! dl.dO

bcc.a
,.—

. . lap). .a:

l>: In. I 1

baq.i .IS

Ubq.t

map
Ui aova.l

aove.w iipi'.dl

beq.a
-. . i

,

•

Ui povc.w dO.dl

dO

ove.b
I -:

.

PencreHeadPoiiUoa:

.-Tnii routine aovea the hradi I

"

;(S«ekZerc *- -

aove».l

ove.l
am.

I

bar

ovaq
oveq
- .-:

lea

ove.b
W:.i
bclr

Ml
but

-.at
I_cuacca>.a5

I

::

.Seek?

Sack
:-. '.- :t

Vol. 2, Num. 1 ©1991

•ddq.l >

•ddq.l I]

dbre ;«rtl

oven. 1 <ipi..dG-dl/*0.*»-a6

in

EJffl

Listing Two disktest s

iduktett.i - test progrea for di*h.i, low level diik I/O
iDtaotutrate?

exeobj

obj 111* 'diiktett.exe-

jAllocete aotw cr.,rj PAH for our tr«ck butter
oveq IKEW.CHIP.dl
ove.I • MS'.KavSofSiie.dO

SYS AlIocHca

d)0, rnfeufpti
beq Abort:

oveq lO.dl

I

SYS AUocHes
nov«.; dO.COOke

beq Abort!

Iti dlf'»MJ»»(pCl.tl

SYS OpenRMource
ove.I dO.reiourceptr

1*4 /unit ipct.ai

lM port (pel.«J
ove.I *1.W_R£?LYP0BTI»II

Hit (He KeplyPort

Mb.) el, el

SYS FlBdTuk
OVe.l do.w.s:
oveq -l.dO

SYS Al!ocS:gr.ei

Mm : do.Hf_s:cBi:

i n b •MTJttGFWT . m_TY?E(1

1

In wjocusmit.afl

we. I el.tl

ove.i r«*outceptilpcl.«6
lir D*_crnw:r(4&i

trt.l dO

bM.b '

ovt.l el.eO

ove.! MC
SYS

We.b .GetUnit

;Qfc, *e now - :ol over the drive

btr SeekZero ;Step the heeds to track icro

:S*t jp bulffr polntvri lor RWTS coda

lee DI5K_D«t«ArMlpcl.eJ

ra«&j!p[r(pcKDia_iU-B«[!.-

cookedfa-: .',D*eodtdBgf(irl*Ii

con r«i i but

iCocy a dish !ram drive to drive 1

jKAWIW: Rawve one o! the disks alter the copy or Aalgetos

.crash! (due to both disks having the se*e exact niw end creation tiaei

ove.I HOi.dl ;o(fte;

-O - K) iw.dJ

tpytoaf

ove.I IM2*Z2,dO ; length

ovt.l •o.dl idrlve

ove.I *n,tiMUtT.iO
i butler

btr Raid
tit.l dT

bne -Error

•S'.I'tt.dC .length
ove.I 11. <U .drive

ove.I •KyBuffer.eO
lbuffer

ber Write

tst.l d"

one . Error

•M.I H5Ii'22'l),dl
dbre d)..CopyLoop

Error:

ESI *ettoreHeedFoeition ;qulte laportent (or 'clicking'

.-drive*

ove.I

;»r

ove.I

retoureeptripei .ae

DP_CIVEUNIT(a6)

4. at

•
'

lee

ove.b

SYS

replyport (pc).eO

10.dO

HP.SlGBITUOl.dO

PrwSifl

ncve.l

ove.I

SYS

1 * 12),dO

cookedbulptripcl.al

FtMJMi

itoortJ:

ove.I
ove.I
SYS

•DIS*_**wBu(Sue.dv

la-bufpirlpel.el

ntmm

J>oril!

oveq
rti

>.. •

Data eiee

dukneae: dc.b

•VtB

rewurceptr:

revbulptr; dc.l

cookedbufptr:

yunit:
replyport: dcb.b

even

Include.

section

HyBufier: di.b

tad

'disk. resource*.

dc.l

dc.l

dcb.b W_SIzt.O
KP.SIZE.O

•disk.s"

ybuKer.Ms

J12*22

AC'S TECH™

Figure Two Protocol Editor

«ttK-» til. pl-ULHH mi n^imMQ

m 1-.". M 1! Mr mi

MM
(.IMMIt.M.1

VW (x.iHMn).r?

Mil*,!

The important part of this protocol is found in the Data
strings in the SEND and RECEIVE panels. Briefly, the RECEIVE
Data entry says to read data in lft-megabyte (SlOutXKXl-hyte)

chunks until an SF7 is received .TheSEND Data entry says tosend
Nwnegahvte chunks of data until there is none left, and then send
SF7. {Note:SF7 is a special MIDI byte meaning "end of system
exclusive data")

In other words, this protocol is rather mindless. It grab-, or

Sends as much data as ii can find, regardless of what the data

looks like. Ifyou could hand i la Deluxel'aint file, for example, lhi>

protocol would happily send it to y< -ur MIDI synthesizer.(No, the
picture would not appear on your Synth's front panel')

What Does a Smart Protocol Seed to Know?

In make your protocol smarter,youneed to tell itsomeVital

information, such as;

• How long (in byles) is Ihe data lor 1 patch?

• How do I ask lor a patch'

• How do I recognize the beginning ol a legal patch?

• Which byte represents the patch number7

• Where is the patch name located, and how long is it?

• When I am sent a patch, do I need to respond7

• When I send a patch, should I expect an

acknowledgement?

• If the user aborts a transfer, should I intorm the

instrument?

You do not need to answer .ill of the questions: only those

that apply to your instrument. For example, some instruments

transmit ail their data in one big message, but others require an
elaborate "conversation" between the sender and the recipient

You must read vour instrument's system-exclusive documenta*
don to determinewhichquestionsneed to beanswered. Forsome
help with this, see Phil Saunders'"Medley"columns in the April
and May 1991 issues of Amazing Computing

Building a Protocol: One Approach

After writing several protocols. I discovered thai there is a

partem to the process. 1 lere's a brief outline.

L Obtain a copy of your instrument s system exclusive documenta-

tion. Specifically, you'll need toknow theproper teres to send when
requesting a patchfrom the instrument, and theformat ofa patch

dump itself. If this information is not included in the owner's

manual, then contact the manufacturer. Many manufacturers will

send you the information free of charge.

2. Use Generic.Singlc to receitv a patch from your instrument. You
will need to initiate tlu- patch transfer yourself by pressing the

appropriate buttons on your instrument.

3. If the manufacturer's documentation does not tell you the size ofa
patch dump, then look at a {Hitch's data using the Librarian's Edit

l.ntry command, and determine tlie size yourself You may also

h to examine the patch dump in more detail.

4. Starting with a copy ofGeneric. Single, write the RECEIVE part of
the protocol. Test it.

5. Write the SEND part of the protocol.

6. Make Music X extract and display the names of patches as the are

received, ifapplicable.

The rest of this article will concentrate on items (4) through

(6). Berorewecan construct theSENDand RECEIVE partsof the

protocol, however,we must learn about Music-X variables. There
are three kinds: numeric, data, and string.

Sumeric Variables

A numeric variable ismuch likeone found in programming
languages or high-school algebra. It is a single letter (case-insen

sitive) that stands for a numeric value. Some ot these variables

may have their values sel by you on the Librarian Page:

P The patch number that you sel on the Librarian Page.

N The MIDI channel that you set on Ihe Librarian Page
and others have their values maintained by Music-X:

M Total blocks sent.

V The last value received.

K Checksum ot a specified sequence ol byles.

A complete list of numeric variables is found in the manual.

Ikila Variables

I he twodata variables, Xand Y.store sequences of data -vent

or received by the Librarian. X stores data in its raw, unmodified
form. Y stores data in "nibblized" form, discussed later. The
manual discusses the formal syntax, but here are a few examples
to get us warmed up.

In general, to store k bytes of data, you use the expression

<X.k>

For example, this is how \ OU tell Music-X to send or receive

25 ($19) bytes of data:

(X 19)

AC'S TECH

Music-X by Daniel J. Barrett

Congratulations! After working hard all summer playing

keyboards with your band, you finally have saved up enough
money to buy that fancy WhizzySynth 3000 sitting in the music

store. You bring it home and happily start making your own
patches. At the end of the day, you decide to store those patches

on an Amiga disk using your trusty Music-X Librarian. But after

looking through your "Protocols" directory, you find that the

Music-X Librarian doesn't support the WhizzySynth 3000 for

patch transfers! Oh no... what can you do now?
Well, it's time lo write yourown protocol. Music-X's Librar-

ian is billed as "universal"; it can communicate with any MIDI
instrument, provided that you supply the right information

using the built-in Protocol Editor. Although this process is docu-

mented in the Music-X manual, it is still tricky to do. In addition,

the manual is more of a reference than a tutorial

This article will teach you how to write a Music-X protocol

and contains plenty of examples. I won't repeat straightforward

information found in the manual, so I recommend having it neat

you whileyouwork through thisarticle. Also, I won't cover every

single detail about protocols; instead, I'll concentrateon the more
practical uses (and a few less common ones) so you can start

writing protocols as quickly as possible.

Since this is a technical journal, I'll assume that you know
how to use an ASCII tableand hexadecimal numbers. In the text,

all hex numbers will be preceded by a dollar sign to distinguish

them from decimal numbers. (For example, hex S42 equals 66 in

base ten.) In addition, some familiarity with MIDI system exclu-

sive data will be helpful.

What is a Protocol?

First of all, what is a protocol? It is a general description of

what your instrument's patch data looks like. (When I say "instru-

ment " here, I really mean anyMIDIdevice that is capable of tending and

receivoig system exclusive data.) Equipped with this information,

Music-X can send and receive your patch data. If the incoming

MIDI bytes don't match the given description, then Music-X will

inform you that an error has occurred.

Both libraries and protocols may be saved as separate files

on your disk. The following diagram illustrates the relationship

of library and protocol files (seefigure one).

Figure One Relati

I ibrary Filos

1

Protocol files

'
' -

lltosopy

»*-»

*3?^
«

Although library files .ire physically separate from protocol

files, every library file has a COPY of some protocol inside it li

voumotiify the copy inside a library, and then save the library, the

protocol file on disk is not affected. Similarly, modifying the

protocol fileondiskdoes not affect any libraries. Thus, if you have

a protocol that is used by ten different libraries, and you want to

modify thai protocol, you must change it in all 10 libraries! This

is a shortcoming of the implementation.

Music-X comes supplied with protocols for several popular

instruments. In pi..ticular, there is a "generic" protocol called

Ceneric.Single that works for almost all instruments. "Well," you
say, "it this, generic protocol is so versatile, why not use il for all

my instruments 7 " One reason la that Ceneric.Single cannot re-

quest patches trom your instrument—you must initiate the trans-

fer from the instrument's front panel (assuming this is possible)

A second reason is that it cannot distinguish legal trom illegal

data. Thismeans that it there is. i transmission error between your

instrument and your Amiga, the generic protocol will not notice.

\ lowever. Generic. Single is a.good starting point lor writ-

ing your own specific protocol. Let's take a look at the generic

protocol by making a generic library. Run Music-X, and choose

Librarian from the Mode menu. Then choose New... from the File

menu, move to the appropriate directory, and select the file

GenericSingle. Finally, choose Modify Protocol from the Edit

menu, and wehave arrived at the Protocol Editor (setfigure two):

Vol. 2. Num. 1 * 1991

Here is how you It'll Music-X to SKIP past 25 bytes of data, not

storing it:

(X.19.19)

Here is how to tell Music-X to break 50 bytes of data into

nybbles. delete all the most-signhcant nybbles, and concatenate

the remaining data into 25 ($19) bytes:

(Y.19)

Siring Variables

Siring variables can hold any tent. The most commonly
used string vat iable is Prefix,whose value is notaled asPR in your

data. Typically, system exclusive messages for the same instru-

ment will begin with the same few bytes. To save typing (and

make modification easier later), store those bytes inside the PR
variable Our later examples will all do this

A second, very useful string variable is the Program string,

which is represented as PC To use it, fill in the strings labeled

Normal Program and Preview Program with anything you like.

The value of the PG variable will be either of these two strings.

You toggle hetwi-en the two values hy pressing the PREVIEW
button on the Librarian Page. This provides a convenient way for

the user to change the behavior of the protocol without entering

the Protocol Editor.

Two genera I-purpose string variables are known merely as

«1 and #2. Fill them with any data you like, and use them
anywhere on the SEND and RECEPv*E panels. If you don't actu-

ally need these strings for protocol data, they provide a conve-

nient place to write comments to yourself about the protocol.

Writing the Send and Receive Strings

Filling in the SEND and RECEIVE panels is perhaps the

most difficult part of protocol writing. You must describe a MIDI
"conversation" that allows your instrument and Music-X to

communicate. Music-X breaks down the communication into

five types of messages: Initiate, Confirm, Ack, Data, and Cancel.

Some instruments use only a subset of these messages, but others

require an ongoing conversation (known as "handshaking")

while data is being transferred (seefigure three).

An Initiate string says, "Hello, I would like to begin a patch

transfer." To determine its value, consult your instrument's

system exclusive documentation, and look for a message called

Figure Three Handshaking

"Request to send." "Request for bulk dump," or something

similar. For the SEND Initiate string, one often uses the header

from a patch dump.
If your instrument does not require any handshaking, then

you will need to useonly the Initiateand Data strings, and you are

now ready to write your Data strings. These contain the X and/
or Y data variables for sending or receiving the patch data and

storing it asa library entry. The case studies in the next seclion will

provide several examples.

If you instrument does require handshaking, then you must

also provide Confirm and/or Ack ("Acknowledge") strings.

These strings each represent the message "1 am ready!" Confirm

is sent by the instrument (and so Music-X must be told how to

recognize it), and Ack is sent by Music-X. Depending on the

system exclusive implementation, your instrument expects a

particular sequenceof Confirm/ Data/Ack messages.The Music-
X manual is really quite good about explaining this mechanism;

however,you will need to spendsome time with your instrument's

svstem exclusive documentation to figure out what messages

need to be used.

Finally, if vour instrument requires a special message if the

patch transfer is aborted, you should fill a value for the Cancel

string.

CASE STUD)': Sequential Circuits Prophet TH synthesizer

Sequential Circuits was the company that essentially in-

vented MIDI. The T8 has a very simple MIDI implementation,

and the patcheshaveno names, so theprotocol itself isquiteshort.

Reading the T8 manual, we find that the following message

will ask the T8 to send a particular patch via MIDI:

$F0 'Begin system exclusive" byte.

SOI Sequential Circuits' manufacturer ID.

$00 Request to send a patch, please

The patch number.

SF7 "End ol system exclusive" byte.

Music-X needs to send this message when it wants to

receive a patch. So, we fill in the following data in the RECEIVE
Initiate box:

F0.01.00.P. F7

Now. Music-X must be prepared to receive data from the

T8. A patch contains 68 ($44) bytes of data, followed by SF7. So,

in the RECEIVE Data box, we write:

(X.44). F7

miiM

I
jump

lie 1

Now, we could have written (X.45) and grabbed the SF7

byte at the same time. However, by writing SF7 explicitly, we
l ausc Music-X to check that an SF7 is received as the 69th byte.

Also, since we have specified the SF7 separately, not as part of an

"X" variable, it will not be stored as part of the patch. We must

remember to append an SF7 when we send our patch data back

to the T8.

To fill in the SEND panel, we must examine the T8 patch

data dump format:

Vol. 2. Num. 1 ©1991

SFO

$01

$03

SF7

'Begin system exclusive" byle.

Sequential Circuits' manufacturer ID.

This is data (or one patch.

The patch number.

68 bytes ot patch data.

"End ot system exclusive* byte.

To transmit the patch back to the instrument, we could
simply send everything we have stored. However, this is a bad
solution because the original patch number is stored inside the
patch data. Thus, wc would be able to send the patch back to its

original locationONLY* This is not very versatile, especially since
the Librarian will let uschange the patch numberon the Librarian
Page if we use the "P" variable.

lo solve this problem, we'll use the first part of the data
dump format as our SEND Initiate string, skip the original firs)

four bytes of the stored patch, and then send the rest of the data
So our SEND Initiate value is now:

F0. 01.03. P

and our SIN!) Data value, which skips past the first -1 bytes, is;

(X.4.4). (X.40). F7

Note thai we remembered toappend theSF7 that earlierwe
chose not to store

Since the first two bytes of both Initiate values are the
same—SFO, SOI—let's define the PR ("Prefix") string variable to

have this value, and use PR in both Initiate commands. They
become:

RECEIVE Initiate: PR. 00, P. F7

SEND Initiate: PR. 03. P

and our T8 protocol is now complete (see Figure tour)

CASE STUDY: Oberheim Xpander synthesizer

The Xpander's protocol is a bit more complicated than the
I 8's because Xpander patches contain names that we can extract

and display on the Librarian Page To build this protocol, we
consult the "Oberheim Xpander/Matrix-12 MIDI Specification,"

part number 950038 from Oberheim

Figure Four T8

^*N I6ii ncioca WMQ
*et*ol «**' *oc»*f tfl-Wiwi Mw* Mlmt. MMSVRl 1 J* mi

ri. a, r, n
M " *

0.44I. fT

vm BUM. <«.«•>. 17

V*
«. II

aim

Using Gencric.Single to grab 1 patch, and reading the
documentation, we find out the following information:

• A single patch dump contains 398 bytes plus SF7.
• I he patch name is found in bytes 382-398.

•The format for requesting 1 single patch is:

SFO "Begin system exclusive" byte.

$10 Oberheim's manufacturer ID.

$02 This is an Xpander.

$00 Send me a single patch, please.

The patch number (0-99).

$F7 "End ol system exclusive" byle

The format of a single patch dump is:

SFO

S10

$02

$01

$00

$F7

"Begin system exclusive" byte.

Oberheim's manufacturer ID.

This is an Xpander.

Here comes a patch.

It is a single patch.

The patch number (0-99)

392 bytes of patch data.

'End ol system exclusive" byte.

Now we are ready to start writing the protocol. Since both
the SEND and RECEIVE command will begin with the same
hvtes, we define the PR

I

,

T'retix ") variable once again this tune

to be:

F0. 10. 02

On the RECEIVE panel, wc set the Initiate value to:

PR. 0. 0. P. F7

We now expect an entire patch dump of 398 (S18E) bytes to

follow,endingwithanSF7,sowecanset theRECEIVE Data value
to:

(X.18E), F7

For sending data, we use the same trick as in the T8 case
study: skip over the first several bytes (containing the old patch
number) and substituteourown in theSEND Initiate value. This
value is:

PR. 1.0. P

We now skip the first 6 bytes of data (the header) and send
only the 392 ($188) bytes of patch data itself, plus the SF7 we
stripped off during the RECEIVE.

(X.6.6).(X.188).F7

Finally, let's tell the protocol how to locate the patch name.
It is found in bytes 382-398 of the patch data. Thus, give Name
Offset a valueof382and Name Length a valueof 16.The Librarian
will now extract and display the name of each patch as it is

received 'secfigurefive).

AC'S TECH ,M

Figure Five Xpander

VUlt-l I. It: vnm

it* Uitr «m
ft, I. I. f. "

ii.tfci, ii mi. it

Ull rWTKO.

Haw Mf»|- HH

0* m: \jt\j».\ii\ir

COMMll. !>• Du- Up tin* ttCH '(into ww i«i*%

.

ItnflH to 1) '.net It) to mi' "• '*' •

The formal of the SPX-W patch dump is the most compli-

cated we've seen so for

SFO Begin system exclusive" byte.

S43 Yamaha's manufacturer ID

n Use MIDI channel n.

S7E This is some kind ol patch dump.

$00 Together with the next byte...

$58 this is the data length: 88 bytes.

-LM 8332" t am an SPX-90 (there are 2 spaces).

The patch number.

32 bytes holding the 16-character patch name.

46 bytes ot patch data.

Checksum

$F7 "End ol system exclusive" byte.

Normally, we would be done now. However. Xpander

patch names are stored in a particular manner that requires us to

do a little more work. At the moment, only the first character of

the patch name will actually be displayed on the Librarian Page.

We shall solve this problem in Example "2 under HANDLING
PATCH NAMES, below

CASE STUDY: Yamaha SPX-90

(or SPX-90II) digital effects unit

(In order to transmit patch datafrom an SPX-90. you mustfirst

turn its MIDI THRU jack into a MIDI OUT. This isdoneby removing

the lop cover (8screws in alii and flipping switch numberSWW5 to the

"T" position. I

In this protocol, we will use checksumsand see an alternate,

more reliable, method for handling the Data strings.

To request a patch from (he SPX-90, the command is:

SFO 'Begin system exclusive" byte.

S43 Yamaha's manufacturer ID.

$2n Use MIDI channel n, increased by S20.

$7E Send me some kind of patch dump.
_LM 8332" I am an SPX-90 (there are 2 spaces).

"M" Give me one patch dump.

The patch number.

$F7 "End of system exclusive" byte.

Bynow,weareexpertsand canconvert this into a RECEIVE
Initiate string quickly, except for the line that says "Use MIDI

channel n." Music-X provides (he N variable which always

contains the number of the MIDI channel that we set on the

Librarian Page. Once we add S20 to it, we're ready to type in the

string:

F0. 43. <20+n>. 7E. "LM 8332". "M", P. F7

We will need some of these bytes again later, so let's store

the first two bytes as the Prefix, and the two strings as Substring

»1. This makes our RECEIVE Initiate value:

PR, (20*n). 7E. <M,P. F7

Our RECEIVE Data string needs to read 16 ($10) bytes ol

header. 32 (S20) bytes of patch name, 4h ($2E>bytes of patch data,

and I checksum byte. Using the same method as the previoustwo
protocols, and ignoring the checksum issues for now, we would
have a RECEIVE Data value of:

(X.10MX.20MX.2F), F7

or more simply:

(X.5F). F7

I lowever, this limewe will build more intelligence into the

RECEIVE Data string by describing the forma tot the natch dump.

This approach has two advantages: it checks the incoming data

more closely, and it saves space by not storing the header bytes

inside each patch. A small disadvantage is thai the patch library

data is now more heavily dependent on the protocol; thus, it you

plan to write your own programs to interpret Music-X library

files, you may have a tougher time doing it

There are 32*46* 1 (S4F) bytes of data after the patch num-
ber. Once again ignoring the checksum, we write the RECEIVE
Data string as follows:

F0, 43. N. 7E. 0. 58, "LM 8332". "M". P. (X.4F). F7

This is now an accurate description of the data we shall

expect, so Music-X will complain if it reads any non-matching

bytes Using our PR and Wl substrings, this becomes;

PR. N.7E.0, 58. #1.P,(X.4F), F7

Since everything before the (X.4F) is not captured by the X
data variable, the header will not be stored inside each library

entry. This fact is the reason for the advantages and disadvan-

tages I listed earlier

Now, let's handle the checksum byte. Yamaha forms its

checksum value by adding all the bytes between "1 and (X.4E)

inclusive, negating the value, applying a logical "and" operation

with S7E. and truncating to one byte. This operation is nutated as

(-K&7E.1). If the checksum received does no! match this value,

Music-X complains.

Vol. 2. Num. 1 ©1991

To form this checksum, we surround the relevant bytes
with curly braces. Thus, our finished RECEIVE Data string is:

PR. N, 7E. 0. 58. 1*1. P. (X.4E)J. (-K&7F.1). F7

Now it slimetobuildtheSFNDporlionofthcprotocol.VVe
must remember that the header In tes and thechecksum have nol
been stored in the library entry, so we must construct and send

them manually. Well, guess what? We can use the same patch
description we made for the RECEIVE Data string. There is no
need for any SEND Initiate string in this case

To save typing, we store the RECEIVE Data string as string

»2, and then just put »2 in our RECEIVE Data and SEND Data
strings. We are now done except for handling the patch name,
which wediscuss inExample*) ofHANDLINCPATCH NAMES,
bclow(see figure six)

ample, AZ means "all characters from 'A' to 'Z.' inclusive," and
06 means "all characters from '0' to '6,' inclusive." You may also
indicate a range of numeric values by using two hexadecimal
numbers preceded by backslashes.

Now look at your two-row table and pack your second row
into ranges, as described above. In our example given, you wind
up with this Character Map:

\00\00.AZ,09.'"

The first range, \00\00, is only one character long. It says
that the value should be translated into 0. Is this detail neces-
sary? Yes, because a Character Map is alwavs assumed to begin
at zero II we used the Map

AZ.09.??

Handling Patch Names

It your instrument's patch data contains the name of the

patch, Music-X can usually extract the name and displav it on the

Librarian Page the instant that the patch is received. In order for

this to work, you may need to specify some extra information:

1
.
WHERE the patch name is located in the patch dump:

2 HOW LONG the patch name is;

3. In WHAT FORM the patch name is encoded: the "Character Map."

I he lirs! two items are pretty intuitive: after all, Music-X
needs to know where the patch name begins and ends. This

information is placed into the Name Offset and Name Length
gadgets as explained in the manual. (Note: these two numbers
must be in decimal, even though every other number in the
Protocol Editor is in hexadecimal.) The Character Map, however,
can be harder to understand, so I will now explain it in detail and
include several examples

Even though Music-X knows WHERE your patch name is,

it may not know how to INTERPRET it. If your MIDI instrument

uses N^CII and stores its patch name one character per byte, then
no special interpretation will be necessary. However, suppose
your instrument uses the values I through 26 to represent the

letters 'A' through'/', values 27 through 36 to represent thedigits
'0* through '9'. and 37 to to be a question mark character. This is

NOT the ASCII code. So, you need to tell Music-X how to

TRANSLATE between your MIDI instrument's internal code lor

the patch name, and the standard ASCII code that Music-X (and
most computers) use. This is done with a Character Map

ToconstructaCharacIcrMap. picture thenumbers through
127 all lined up in a row. These are the numbers that your
instrument uses for characters in patch names Beneath each
number, write the character that the numberSHOULD represent
to Music-X. The resulting two-row table is a Character Map
Here's the Map for our example above:

instead, then the value!) would be translated into'A.' I into

'B.'etc. This is wrong—it's off by 1.

The second range, AZ, says that the values 1-26 get trans-

lated into the characters A' to 'Z.' The third range. 09. translates

the values 27-36 into the characters O' through '9. 'The last range,
??, is only one character long, and translates the value 37 into a
question markcharacter. What happens to thevalues 38-127?The
manual does not say, so I play it safe and specify that the)

translate to themselves:

\00\00.AZ.09.??.\26\7F

Character Maps are versatile but have a few serious limita-

tions. First of all. they cannot hand lecharacters that are not stored

one per byte. For example, the Prophet VS synthesizer stores its

name in tightly packed, 5-bit characters, which Music-X cannot
translate. Second, Character Maps are insufficient if your
instrument's internal character set is wildly unlike ASCII. For
instance, if a synth has an internal character set like this

5 6

'M' '2'

with characters placed arbitrarily in the table, there is no Charac-
ter Map that can represent this translation.

But, you cry, why can't we define a separate range for each
character, containing ONLY that character, like this'

AA.OQ.77,%%.RR.MM.22.". ...

In theory, you can; unfortunately, the Char Map gadget can hold
only 79 character! Thankfully, today's MIDI instruments are

constructed around popular microprocessors that use ASCII.
Perhaps a future version of Music-X will address these limita-

tions

I lere are some examples of constructing character maps.

^16 1^

7 < 9 1

Now that we have the table, how do we fill in theChar Map
field on the Protocol Editor screen? This field contains a list ot

RANGES OF CHARACTERS, separated by commas Tor ex-

Example I: Sol Too Tricky

Suppose your MIDI instrument uses values 28-36 for the

digits T through '9', 37 for 0', 53-78 for small letters a-z, and 83-

108 for capital letters A-Z.

ACs TECH'"

\00\1B.19.00,\26\34.az.\4R52.AZ.\60\7F

The rangesare 0-27 (SO-SIB) untouched, the digits 'V to '9/

thedigit'0'initsownr.inge.38-52(S26-S34)untouched,theletti'r>

a-z, 79-82 (S4F-S52) untouched, and the letters A-Z. Tobesafc. we

Spei iry that the remaining values 109-127 (S6D-S7F) translate to

themselves

Example 2: Those Pesky Zeroes

The Oberheim Xpandcr's patch names ate stored in a way
that causes problems for the Librarian. The patch name is 8

characters long, but each character is stored in a two-byte Held.

Thus, the name appears to have a zero stored in every other byte

When Music-X reads the 16chara« ten a-- a name, and tries to print

the name on the screen, it stops printing after the first character.

Why? Because zero means "end of character string" in most

Amiga programming languages, as all C programmers know.

How can 1 print the entire patch name if ihe first /eroclfectivek

cuts off the rest of the name?

To remedy this, I used a Character Map to translate zeroes

into space characters (ASCII S20). It leaves all other characters

untouched. Here's theCharacter Map. assuming that the Xpander

uses plain ASCII for the rest of its characters (which it does):

\20\20.\01\7F

Now the patch names arc displayed correctly, though a blank

space appears after each of the 8 characters. We can eliminate the

last space al least bv claiming that the name length is 15 instead

ol 16.

|ust for fun, let's modify our Char Map to translate capital

letters into small letters. The Xpander uses only capital letters

internally. On the ASCII table, capital letters are found in posi-

tions 65-90 (S41-S5A), so we isolate this range:

^20£0.\01\40.AZ,\5B\7F

and then translate the letters to lower case:

\20tfOAOl\40.az.\5B\7F

Example 3: Sybbling al the Yamaha SPX-90

The Yamaha SPX-90 digital effects unit stores its 16-charac-

ter patch name in 32 bytes of data. F.ach character is represented

as a two-byte quantity, with only the least-significant 4 bits used

in each byte For example, suppose the first two bytesof the patch

name are 4 and 5. In binary, these numbers are 00000100 and
00000101 .Extract the least-significant 4 bits incachtogetOlOOand

0101 . Paste them together to get 01000101 . This is Uhe number $45

which is the character 'E' on the ASCII table.

Anyway... can we make Music-X extract this patch name?
I urning to the manual, we find that Music-X can indeed under-

stand this "nybblized" data (a nybble is half a byte) by using the

^ data variable (page 384). It can grab two bytes, extract their

least-significant nybbles, and join them together into a single

byte—exactly what we need. Hooray!

Unfortunately, oursuccess is short-lived. Music-X assumes

that the first byte arriving is the least-significant, and the second

is the most-significant. This is exactly the opposite of what the

SPX-90 sends! In other words, in our $45example above, Music-

x will interpretmisas thenumber $54 (theletterT).Ourmethod
won't work.

In fact, our method has a second problem ll we use the V
variable toextract A) bbles, this changes the actual dala stored by

Music-X,andtheretorealters the value oloui computedchecksum

(K variable)! In order to make this work, we would have to disable

thechecksum handling in our protocol,and treat Ihechecksumas
an ordinary data byte

As of this writing, I still have not managed to gel MUSIC-X

to understand SPX-90 patch names. Ifanybody elsecan figureout

a method, please contact me

Conclusions

I hope that this article has made protocols less mysterious

for you. I've now written protocols for about 10 different instru-

ments (including some fairly old synthesizers), and the process

get9 easier each time. Don't be afraid to experiment: you can't

break anything by writing an incorrect protocol. As with any

computer dala. however, make sure to back up your patches in

some other way before experimenting, in case \ OU accidentally

overwrite something Good luck'

ADDESDUM: A Few Bug You May Encounter (Music-X Ll)

I encountered fl few hugs while using the Librarian and

Protocol Fditor It you .ire editing an existing library's protocol,

and you Load... a new protocol ami return to Ihe Librarian Page,

the old protocol's name will still he listed under the " —Format—
" label. In fact, if VOU now re-enter the Protocol Editor, the new

protocol's name has been changed to Ihe old name (although the

rest ol the new protocol is OK).

It vou choose Load... in the Librarian, and then click on

CANCEL in the requestor, your current library disappears From

the screen (and is replaced b\ "\o Page") I consider this a bug

because "CANCEL" should return the program to the exact state

it was in before the requestor appeared. To bring back your

library, use the Set Display command in the Edit menu.

If you are m the Protocol Editor and you choose Load... or

Save... from the File menu, sometimes the tile requestor's Dire< -

tory gadget contains an incorrect value. This causes the n*
"—Not a valid directory—" to be displayed in the requester. If

you examine the directory name, you will find that the end of the

directory name has been replaced by the PROTOCOL'S name'

This happens if your directory name is longer than 32 characters,

I have managed to put Music-X into an infinite loop (al-

though its menu bar keeps working] bv choosing Load in the

Librarian when there is already a library loaded.The problem is

intermittent and may be related to the above directory bug.

About the Author

Daniel Barrett has been working in electronic and computer

music since 1979. and was the moderator of the Internet Music-X

electronic mailing list (now* defunct) He is currently a Ph l>

candidate in computer science at the Universit) ol Massachu-

setts, and mav be reached by electronic mail

as barrett@cs.umas-.edu (Internet) or

>inlernet:barrett@cs. umass.edu (CompuServe).

Special thanks go to Mike Metlav for the use ol his two

Prophets

Vol. 2. Num. 1 1991

AudioProbe
by Jim Olinger

Since the Amiga has the best built-in sound capabilities ol
any personal computer, it's rather surprising how little attention

Amigasound programming has received Thismay be so because
most people are visually oriented Humans are usually aware of
what they are seeing.Sound is often subliminal. Hearing isa more
subtle, primal sense.

Or maybe it's just because it's so easy to play sampled
sounds on the Amiga that few programmers have explored the
alternatives, which call for diving deeply into Exec and I/O
devices. Most games seem to use sampled sounds exclusively.

There arc two general techniques for producing sounds
with a computer; sampling and synthesis. Each has advantages
and disadvantages.

Sampling consists of playing back digitized sounds. The
most realistic musical instrument sounds and most impressive
sound effects are usually samples. The Amiga's advanced audio
chips usually make sample playback a "fire and forget" proce-

dure. The CPU can pass the sampled sound data and play
instructions to the audio hardware and go on about its other
business.

Since samples are essentially audio recordings, a sample
user faces all the problems of an audio engineer. The sound is

usually recorded, digitized and then manipulated with sample
editing software before it is ready to use. It's nowonder that most
games include "sound designer" in the credits! Samples also tend
to be large; 16 to 32K per sample is common.

Synthesis is the process of manipulating relatively simple
waveforms. The waves don't take up nearly as much memory as
samples, but more attention from the CPU may be required.
Synthesized sounds aren't as realistic as samples (although you
might ask what a "real" phaser or hyperspacejump sounds like),

but a synthesized sound might be perfect fora cockpit alarm or for

an instrument in a musical soundtrack.

Both sound generation techniques are valuable, and they
are frequently used together. "StarWars" is an excellent example.
Every environment, such as Luke's planet, Obi-Wan Kenobi's
home and the Death Star, had a characteristic background sound
produced by simple analog synthesizers. Starship engines were
derived from a recording of the Goodyear blimp. Darth Vader's
voicewas produced by radical filteringand electronic processing
of James Earl Jones' voice. The unnaturally regular hissing of
Darth'sbreathwas another synthesizer sound. R2-D2's voicewas
a vvild mixture of human voices, puppy cries and synthesizers
And so on.

Theaccompanying program, AudioProbcl, was written to

explore the application of analog synthesizer concepts to Amiga
sound generation. It dynamically manipulates pitch and volume

(the two simplest sound parameters). It is oriented toward pro-
cessing simple waves, but it will also work with sampled sounds.
In fact, most programmers will probably use the AudioProbe!
techniques to increase the utility of individual samples by dy-
namically modifying the sample to produce different sound
effects.

Before we get into the program, let's examine some basic
synthesizer concepts and the Amiga audio hardware.

Analog Synthesizer Basics

The first electronic instrument was the Telharmonium,
which was intended to send music to subscribers over telephone
lines. It was invented in the 1890s. This service never took off, but
the Telharmonium was the basis for the Hammond organs,
developed in the 1930s. Several other electronic instrumentswere
invented in the early decades of this century.

"Classical" electronic music emerged after World War II It

was basedon manipulatingsounds with thenewly available tape
recorders, and was actually closer to modern samplers than to the

analog synthesizers which appeared a few years later

The modern commercial synthesizer was developed in the
late 1960s by Robert Moog. The first instruments filled a signifi-

cant part of a room Sounds were "programmed" by connecting
indh idual components with a tangle of patch cords. The early
"Moogs" (practically a synonym for "synthesizer" at the time)
were custom-built, temperamental, and very expensive.

The first affordable synthesizer was the Mini-Moog (pro-
duced from 1970 to 1981), which combined the large instrument's
most often-used components into a suitcase-sized package. It

contained an organ-style keyboard, voltage-controlled oscilla-

tors (VCOs).a noise generator, a mixer, a voltage-controlled filter

(VCF), a voltage-controlled amplifier (VCA>, and two envelope
generators, figure 1 is a block diagram of a generalized analog
synthesizer voice, similar to a Mini-Moog A Mini-Moog could
play only one note at a time. Modern synthesizers consist of a

number of these voices, allowing several notes to be played
simultaneously.

Many musicians still prize their Mini-Moogs, which can
produce sounds that are difficult to recreate on any other svnthe-
sizer.

TheMini-Moog sound sources are three voltage-controlled
oscillators, which produce simple, but harmonically rich, wave-
torms. and the noise generator, a circuit which creates a "hiss,"
like radio static. The number of complete wave cycles the oscilla-

tors generate each second determines the pitch of the sound.
Noise, being a set of random, non-repeating frequencies, has no
distinguishable pitch.

AC'S TECH'M

Sound Synthesis Experiments in Modula-2

The waves from Ihe VCOs .ire the basis of most instrument

sounds while noise is useful for wind or surf effects, percussion,

gunshots, or adding "breath" to flute sounds
Figure 2 shows some common synthesi/er waveforms.

Compare them to the acoustic instrument waveforms in Figure 3.

The mixer combines the sound sources for processing by
the filter and amplifier.

The voltage-controlled filter is a "super tone control "
It

passes all frequencies below a certain "cut-off" point and re-

moves all frequencies above that point. Filtering a waveform
changes its shape. Since the waveshape determines the timbre of

a sound, the filter is the primary timbre modifier.

The voltage-controlled amplifier controls the final volume
of the sound.

One of the oscillators could be switched from voltage-

controlled operation in the audio-range (20-20.1XX) Hertz) to low

frequency output (0.2-20 Hertz) which could be directed to the

VCOs to produce vibrato and/or to the VCF to create periodic

timbre changes.

The envelope generators output voltages which vary over

time. One envelope generator is connected to the filter, allowing

dynamic timbre variations. The other envelope generator con-

trols the amplifier.

Figures 4a and 4c are drawings of thewaveforms produced
by an organ and guitar playing three staccato (detached) notes,

with high, medium ,and low pitches. Figures 4b and 4d are

graphs of volume changes over the time the notes are being

played and were obtained by connecting the highest volume
points of the waveforms. These graphs are called "envelopes"

and they represent the characteristic "shape" of an instrument

note.

An organ note starts plaving at full volume as soonasa key

IS pressed. Continues plaving at that volume as long as the kev is

held down, and ends abruptly when the key is released. A guitar

note starts with maximum volume when Ihe string is pluckedand
the volume decreases smoothly and fairly quickly.

A trumpet note (Figure's 4e and 4f) begins with a quick
smooth volume increase, then drops back to a MckU level When
the player stops blowing, the volume quickly, but not instantly,

decreases to zero

The envelope is an extremely important part of an
instrument's characteristic sound. One wav of producing unique
sounds is playingan instrument'swaveform with the envelope of

a different instrument. For example, a trumpet waveform played

with an organ or guitar envelope will sound more like an organ
or guitar then a trumpet.

A trumpet envelope is the model for the ADSR (Attack,

Decay. Sustain, Release), the most popular envelope generator

(Figure 5). When a key is pressed, the output voltage climbs from

zero tomaximum at a rate controlled by the "attack time" control.

After reachingmaximum, the voltagedrops to the "sustain level"

over the "decay time." It remains at the sustain level until the key

is released and falls to zero over the "release time."

The AudioProbcl program's ADSRs have an additional

parameter, "sustain time." which controls theamount of time the

envelope remains at the sustain level.

Oscillators, filters, and amplifiers had been used in "elec-

tronic music" for over 20 years when the Mini-Moog was devel-

oped. They were everyday radio equipment. "Voltage control"

was the key difference. Theearliercomponentshad tobemanipu-
lated manuallv. Forexample, a musician had totum anoscillator's
frequency knob tochange pitch. Playing a scale required record-

ing each individual note and then splicing the tape.

Voltage control changed all that. Voltage from the key-

board controlled oscillator frequency. Voltages from the enve-

lope generators shaped the response of the filter and amplifier.

This gave the musician real-time control of pitch, timbre, and
volume.

The Mini-Moog and the ARP Odyssey, a similar synthe-

sizer built by Moog's principal competitor, ARP Instruments,

moved electronic musk from the recording studio into the world

Figure One Generalized Synthesizer Votes

,:
Sound

_

urtei

Noil*

(iprioralor

Sound
Modifier*

Mix.r - Conl.oH.d
Filter

Vol lag*
l oilli'Oiled
O«cillator|il

r

1

Keyboard
low- vcr

Fr*qii*n<y
\

Envelope
o»i tiiaior Qtorator

VoHago-
Con Irolled
Amplifier Out

V CA
tnvoiopo
Generator

caoimwi •

Vol. 2. Num. 1 ©1991

Figure Two Common Synthesizer Waveforms

Of live performance. Most modern synthesizers still us*' the
sound-genera ting techniques devised for these pioneering in-

struments.

Computer Synthesis

Many analog synthesis concepts relate directly to computer
synthesis.

A computer can't produce analog waveforms directly. In-
stead, a waveform is represented by a string of numbers, usually
called a wavetable. To create a wavclable, one must divide the
time axis of a graph of the waveform into equal segments. The
points of the waveform at each time interval are called samples.

To play a sound, thecomputer scans the wavetable, sending
each sample to a digital-to-analog converter (DAC). The DAC
output is sent to an amplifier, then to a loudspeaker. Tin- (re

quency of the output waveform is determined by the speed at

which the wavetable is scanned.

Figure Three Acoustic Instrument Waveforms

Analog oscillators contain circuits to produce a limited
number of waveforms, such as sawtooth, square, and pulse
waves. The raw waveforms are good for producing some pipe
organ timbres, but are too harshly "electronic" for most musical
applications. The filter is used to tailor the waveform to create
more pleasing timbres.

Computers usually don't have voltage-controlled filters to

alter waveforms. Instead, the wavetable can be loaded with any
waveform. One analog feature is lost: it's difficult to change a
computer wavcformdynamically.Thiscan bedone witha "double
buffering" technique where a new wavetable is calculated while
another wavetable i> being played. The second wavetable is then
played while the first i> recalculated A detailed discussion ot

double buffering will have to wait for another article.

Voltage-controlled amplifiers can be computer-simulated
by adjusting the amplitude of the samples in the wavetable or by
controlling the digital-to-anatog converter's output level. The
second method is preferred, if the hardware supports it. To
minimize distortion, the wavetable should use the maximum
available sample range and volume should be controlled bv
adjusting the DAC output, Envelope generators, low frequency
oscillators, and other controllers are simulated in software

Amiga Audio Hardware

TheAmiga has four independent hardware audio channels
("voices"). Each voice contains a direct memory access (DMA)
channel, an eight-bit digital-to-analog converter and an ampli-
fier. Channels0and3are connected to the left stereo output while
channels 1 and 2 are connected to the right output jack.

Complex audio effects can be created by using one audio
channel to modulate the amplitude or frequency of another
channel. We will concentrate on DMA playback of wavetables.
Each audio channel is controlled by registers containing control
data, the wavetable starting address, the wavetable length, the
output volume, and the sample playback penod.The output
volume ranges from (silent) to 64 (maximum).

The playback period specifies the number of system clock
ticks to wait before sending another sample to the DAC. One
system tick is 0.279365 microseconds. The DAC requires 1 2-1 ticks

(34.642 microseconds) to perform a conversion. Therefore, the
minimum period value is 124 ticks. Since the frequency of a sound
is the number of complete waveform cycles per second, the
output frequency is determined by the wavetable length and the
sample period. Note that frequency increasesas period decreases.
I lere is the equation for calculating the period:

l cycle l Mcond 1.000.OQ0 ucro a«ca
X X .

1 interyil

L MBp>i F cyelw

Thii se-i

}S1»M.< .nurvals

i tKoaa O.jnifcS aicro lees

1

P > period in system clock ticks
L * wavetable length in samples

'roquency in cycles per second (Hertil

The audio software is implemented as a standard Amiga
input/output device. It is controlled by standard I/O device
commands, as described in Part I Chapter 4 (I/O) of the ROM
Kenh-I Manual.

AC'S TECH™

The AudioProbel Program

AudioProbel consists of several modules, written in Bench-

mark Modula-2. API Voices contains all the procedures for allo-

cating, playing, modifying, and releasing voices. API Envelopes

implements volume and frequency envelope generators for each

voice. APIWaves calculates several basic synthesizer waves,

noiseand user-specified waveforms. Noise is the basis for a large

number of sound effects. The AudioProbel main program is

primarily control logic and procedures for demonstrating fea-

tures of the other modules.

AudioProbel can read sampled sounds from disk, but it

also generates simple synthesizer waveforms. It includes numer-
ous procedures for experimenting with waveforms. The
AudioProbel procedures for allocating, playing, stopping, and
releasing voices are derived from the program in Lcn White's

article "Digitized Sound Playback in Modula-2" (Amazing Com-
puting. May 1989).

The most important addition is the ability to modify the

frequency and volume of sounds while they're being played.

When I started writing the program, I expected this to be simple.
It wasn't. An obvious way of changing frequency or volume is to

play a voice, stop it, change the desired parameters, and start the

altered voice. There is a distinct "pop" when the old voice is

turned off. It's impossible to make smooth changes with this

method,

A voice is controlled by sending an I/O request to the audio

device with the voice parameters in an lOAudio record. How
about changing the parameters in this record while the voice is

playing and sending another I/O request? This causes two prob-
lems. First, it doesn't work. The frequency and volume stay the

same. Even worse, thecomputer crashes when the voice is turned

off. The "I/O" chapter of the ROM Kernel Manual warns, "I/O
request blocks, once issued, must not be modified or reused until

they are returned to your control by Exec." Exec doesn't release

the request block until the voice has stopped playing.

Each of the four voices is allocated by opening a communi-
cations port, creating an I/O request, opening a copy of the audio
deviceforthechannel. and sending an "allocate" command to the

device.

To control a playing voice, one must create another I/O
request, with itsown communications port and copy of the audio
device. The "period" and "volume" fields of this "control" I/O
request are set to the desired values and the "unit," "allocation

key,"and "data" fields are loaded with data from the I/O request

block of the channel to be modified. This "change period/vol-

ume" command is sent to the control I/O request's copy of the

audio device.

The device procedure "BeginlOO," rather than "DolO()," is

used toplay and alter voicesbecause "Begin!0(),"unlike"DoIO(),"

doesn't reset the device flags in the I/O Request.

Figure Four Instrument Volume Envelopes

-la: Sla<< nlo o*-<jn*t not**

-lt>: Voltim* s>nvelOf>«- of staccato organ not

He: Staccato guitar nolo*

•!<•: Volum* wnvvlope of staccato guitar- notes

ViM/WlAA/vv— v-oium
-t

-t«: Staccato Irumpot not«» Tim*»

lf: Volums vnvvlopo of staccato Iimihi|><-< nots-

Vol. 2, Num. 1 ©1991

Figure Five ADSR Envelope Generator

??***• -Su.l.in Tim*-— R#!•••> Ti
1 irn-

k.l.n.d

Operating AudioProbel

Since AudioProbel is a program for experimenting with
sounds, it has a simple character-based user interface to allow
maximum flexibility (Figure 6). If AudioProbel is run from a

console window, like the window created for the "Run Main
Module" function of the Benchmark editor, the program is con-
trolled by single keypress commands. If it is run from the Shell or
CU, the "Return" key must be pressed after thecommand key to

send the keystrokes to the program
"Select Waveform" calls procedures which create simple

wavetables. It also can load a sampled sound from disk. When a

waveform is selected, it is played for two seconds at "Sample
Volume". "Load Sample" is for "raw" samples. It will not work
correctly with IFF formal samples.

Figure Six AudioProbel Controls

fcdulailor.il

MMtfti

" Dtcayi
.

Saaple: Fivqutnty: Volume: CYClHi

-

9* Envelop*

"IC**
mmmim w -.

- r#^»y: RtlMMi

H-Hodula!

Freesampled sounds can Iv found on public domain disks
and bulletin boards. A number ofcompanies listed in tin- "Music"
section of AC's GuuU' to the Amiga sell disks of sounds. Some
games, such as Falcon, have sound files which can be used for
experiments.Ofcourse, it's probably illegal and certainly unethi-
cal to use other people's game sounds in your own commercial
product. Numerousaudiodigiti/ers. >ome costing less than S100,
an- available. Programs which will generate "samples" also exist.

The AudioProbel "noise" waveform is anexampleof acomputed
"sample."

Two ol the available waveforms, "Clarinet" and "Flute,"

were obtained by digitizing drawings ol the waveforms from a

music book and reading evenly-spaced points with the co-ordi-
nate feature of DeluxePaint HI. Wavesample values also could be
determined by drawing the wave on graph paper.

The waves "Sine," "Sine32," and "Sine64" demonstrate the

differences in timbre between thesamewaveform represented by
20, 32, and 64 sample values.

"Set Frequency" controls the playback period. For short
waveforms, frequency directly corresponds to the pitch of the
outputsound 1 lowever, since pitch is determined by both period
and wavetable length, and the minimum period is 124 system
clock ticks, long wavetables can't be played at high frequencies.
For example, the length of the longest wavetable that can be
played at 440 Hertz ("middle A") is 64 bytes. This length is

sufficient for simple single-cycle waves.
If the period is set to less then 1 24, theaudio hardware won't

have enough time to retrieve the next data sample and the
previous sample will be reused. This produces unexpected audio
effects. All the frequency- related procedures in the APlVoices
module avoid this problem by settingany period values less than
124 to 124 and writing an error message. I call this adjustment
"period clipping."

Sampled sounds, with wavetable lengths of 16K to 32K,
contain many wave cycles, making the exact playback pitch
difficult tocalculate. When playing long wavetables, a frequency
under 1 Hertz should be used. Attempting to play a wavetable
longer than 28,866 bytes at 1 Hertz, will cause period clipping.

"Set Volume" adjusts the playback volume from O(silent) to

64 (full). Both frequency and volumeare "base" values,whichcan
be increased or decreased by the envelope generators. There are
two independent envelope generators. One modifies frequency
while the other modifies volume.

"Modulation" is the maximum variation from the base
value, expressed in percent. Positive and negative modulation
amountsareallowed.Themaximum volume modulationamount
is -100% to +100%. A frequency modulation amount of +100%
doubles the frequency, raising the pitch by one octave, while -

100% halves the frequency, dropping the pitch by one octave.

Frequency mod illations of several hundred percent are possible.

"Attack Time," "Decay Time," "Sustain Level," "Sustain
Time," and "Release Time" control the envelope shape. "Set
Sample Frequency" and "Set Sample Volume" adjust frequency
and volume for playing samples without using the envelope
generators. "Set Sample Cycles" controls the number of times a
sample will be repeated. These functions are used mainly for

auditioning new samples.

"Play Broken Chord" is a stereo demonstration. It starts

each voice individually, building up to a four-note chord, then
removes the notes individually. The envelope generators are not
used

AC'S TECH™

"PlayChord" playsa four-note chord. Frequency and vol-

umecan be modified by (he envelope generators. If the frequency

envelope is applied, the result is similar to a slide guitar chord. A
major chord, containing the first, third, fifth, and octave notes of

a major scale, is produced. The root note of (he chord is deter-

mined by the "Frequency" parameter.

"Play Note" plays a single note, controlled by the "Fre-

quency" and "Volume" parameters and the envelope generators.
The notes used in the chord experiments are computed

using the relationships of (In- equal-tempered musical stale. In

this system, the frequency of each note is the twelfth root of 2

(1.059463) times the frequency of the previous note. Figure 7
shows two octaves of notes in standard concert (uning, where
"middle A" is 440 Hertz. The lowest scale note is set from the

"Frequency" parameter

"Play Siren" demonstrates volume and frequency changes
without using the envelope generators.

"Play Sample" plays the current waveform, controlled by
the"Sample Frequency," "Sample Volume," and "SampleCycles"

parameters This is primarily an "audition" function. The envfr

lope generators are not used.

Experiments

Here are a few pointers bef.ire we get into the experiments.

In the unlikely event (hat you haven't already hooked your
Amiga's audio outputs to a stereo. 1 strongly recommend you do
so before experimenting with AudioProbel . The distortion from

the tiny amplifier and speakers in your video monitor can give

you extremely misleading results. You will also miss the stereo

effects if you use a mono monitor.

AudioProbel is almost as complex as a Mini-Moog. which,

to the beginner, iscomplex indeed. Many functions interact, often

in ways which aren't immediatelv obvious. The Mini-Moog
provides inslant feedback. When a switch is flipped or a knob is

turned, something (usually) happens instantly. AudioProbel is

controlled hy pressing keys to select menu items and typing
numbers. This is more abstract than operating controls directly.

Toavoid becoming disori-

pitch indefinitely, based on the "Modulation Amount" param-
eter (+100% modulation = 1 octave, +200"/.. modulation = 2

octaves, etc.). The maximum frequency before period clipping

(Hvurs is calculated by the equation: Maximum Frequency =

28867 / WaveLength. The following table gives the frequencies

loi the built-in AudioProbel waveforms

Waveform Waveform Max Note Max Chord

Name Length Frequency Frequency

Sine 20 1443 721

Sine32 32 902 451

Sine64 64 451 225

Tnangle 32 902 451

Flute 62 465 232

Square 20 1443 721

Clarinet 52 555 277

Sawtooth 32 902 451

Noise 4096 7 3

ented, experiment with chang-

ing one parameter at a time. Try
many values of each parameter
and many combinations of pa-

rameters. Don't be afraid to try

strange combinations. In syn-

thesis, many impressive and
useful sounds have been dis-

covered by accident.

If something unexpected

happens, compare the relation-

ships of all the elements. One
common problem is envelope
conflicts. If a sound has a long

frequency envelope and a short

volume envelope, the volume
envelope will cut the sound off

before the frequency envelope
is finished

The "Chord" and "Siren"

functions have maximum
pitchesan octave above the "Fre-

quency" parameter ["Fre-

quency" ' 2). Ihe Frequency
Envelope (ieneratorcan increase

Figure Seven
Equal-Tempered Scale

Frequencies

Note Frequency

M
B 493.9
C 523.3
CI 554.4
D 587.3
Dl 622.3

659.3
F 69B.5
I 740.0
G 784.0
(it 830.6

-. 880.0
.

B 98". u

C 1046.

b

:• 1108.7
D
PI

-

F 1396.9
1480.0

; 1568.0
II 1661.2

Setup: Set"Sample Volume" to 64. Select "Sawtooth" wave.

While the "Audition" note is playing, adjust the volumeon your
stereo to a comfortable level.

Waveform Resolution: Set "Sample Volume" to 64. Select

the "Sine," "Sine32," and "Sine64" waveformsandcompare their

timbres. Notice that Sine32 and Sine64 are practically indistin-

guishable while Sine has a distinct high-pitched whine added to

the fundamental sound. This suggests that 32 samples is the

optimum sample length for simple single-cycle waveforms.
Waveform Timbres: Set "Sample Volume" to 64. Compare

the timbres of waves with similar waveforms (see Figures 2 and
3) such as "Sine32," 'Triangle," and "Flute" or "Square" and
"Clarinet" (named "Bright Clarinet" in figure 3d).

Stereo Voices: Select any waveform. Set "Frequency'' to

avoid period clipping. Set "Volume" to 64. Play "Broken Chord".
Notice how the individual notes appear in alternating speakers.

Siren: Select any waveform. Set "Frequency" to avoid pe-

riod clipping. Play "Siren." Be sure to try this with all waveforms,
using numerous frequencies, including extremely low frequen-

cies.

Volume Envelope: Select the "Sine32" waveform. Set "Fre-

quency" to 440 and "Volume" to 0. Set "Frequency Envelope-

Modulation" to 0%. "Volume Envelope" parameters are Modu-
lation = 100%, Sustain Level = 50%, Attack = 0.5, Decay = 0.5,

Sustain^ 1.0 and Release = 0.5. Play "Note"and "Chord." Notice
that the volume builds to full, drops back to half, sustains, and
finally decreases to zero. Vary the Attack, Decay, Sustain, Sustain
Level, and Release parameters and observe the change. Set "Vol-

ume" to 16 and "Volume Envelope Modulation" to 75%. Play

"Note." This time, the volume starts at 16 and builds.

Frequency Envelope: Select Ihe "Sine32" waveform. Set

"Frequency" to 1 10 and "Volume" to 64. "Frequency Envelope"
parameters arc Modulation = 100%, Sustain Level = 50%, Attack

= 0.5, Decay = 0.5, Sustain - 1.0 and Release = 0.5. Set "Volume
Envelope Modulation" toO'u l'!,i\ "Note" and "Chord". Varythe

"Frequency Envelope" parameters. Try "Frequency Modula-
tion" = +200% and -200%.

Volume and Frequency Envelopes: Vary the "Frequency

Envelope" and "Volume Envelope" parameters with non-zero

modulation amounts

Vol. 2. Num. 1 ©1991

Loony I lines: Select the "Sine' waveform N'l "I rcqueiuv
to 1 10 and "Volume" to 0. "Frequency Envelope" parameters are
Modulation 200%, Sustain Level 100%, Attack - 1.0, Decay =

Sustain - 1.0and Release 0-5. "Volume Envelope'' param-
eters are Modulation : 100%, Sustain l evel = 100%, Attack 1.0,

Decay 0.0, Sustain - 1.0and Releases 05. Play "Chord". Does
mis sound a bit like the beginning of a certain cartoon?

\oise Experiments: \oise is a bask synthesizer waveform
that is more like a sample than a simple waveform. The following
experiments demonsirate some ot the ways muse can be used.

)et Takeoff (heard from ground): Scle. i \oiso" waveform.
lor a smgle-enginejet, set "Frequency" to 0.1 and "Volume" toO.
"Frequency Envelope" parameters are Modulation = 200% Sus-
tain I evel 100%, Attack = 4.0, Decay 0.0, Sustain 12.0 and
Release - 0.0. "Volume Envelope" parameters are Modulation
100%, Sustain Level = 100%, Attack = 4.0, Decay - 0.0, Sustain -

6,0 and Release = 6.0. Play "Note " For a multi-engine Jet, set

"Frequency" to0.025and play "Chord." Adjustany or all of these
parameters to your own taste.

To increase realism, play oneorrwo voices with the "Noise"
waveform and add a high pitched whine by playing additional
v ok. s with the "Sine" or "Triangle " waveforms This will require

additional programming (see "Improvements").
Jet in Flight: Select "Noise" waveform. For a single-engine

jet, set "Frequency" to 0.1 and "Volume" to 32 Set both "Fre-

quency Modulation" and "Volume Modulation" amounts to

zero. Control the time the sound plays by adjusting the "Sustain
rune" tor either the Frequencv or Volume Envelope Generator.
Play "Note." lor a multi-engine jet, set "Frequency" to 0.05 and
play "Chord"

One distinct problem with the AudioProbel envelope gen-
erators is that they take over control of the program until the
envelope cycle is complete. I his might be fine for short sound
effects, but it could interfere with other activities, such as screen
redraws, if a sound has a long envelope. One way of dealing with
this problem would be to move envelope generator updates into
the normal processing loop. Since the Amiga is a multi-tasking
machine, a better solution would be to create a separate task to

operate the envelope generators.

Tlte End (Of The Beginning)

This has been a brief introduction to sound synthesis \a
with all skills, expertise in synthesis requires continued study
and practice. Develop your ears. Listen to all the sounds around
you and consider how they could be synthesized. Analyze the
basic components ol a sound and determine how they can be
manipulated to produce the effect you want. Be alert for happy-
accidents. Many discoveries have been made on the waj to

something else.

An amazing and wonderful world of sound awaits you.

Bibliography

Amiga Hardware Manual:
Chapter 5- Audio Hardware, pp 5-1 to 5-31

Amiga ROM Kernel Manual: Part 111

Chapter 1 - Audio Device, pp 3-1 to 3-28.

Improvements

AudioProbel wasn't written asa music program, but music
entry and editing capabilities could be added. However, al-

though the Amiga has wry good sound-producing capabilities

(foracomputer),youwould probably get better results by buying
a synthesizer. MIDI interlace, and sequencer software if your
primary interest is music.

AudioProbel doesn't provide the instant feedback of a

Mini-Moogoi ARPOdysseysynthesizer, Thi> could be corrected
by< I

eating an Intuition-based control panel, which could be vcr\

useful for sound design experiments.

Data for arbitrary waveforms i> created by manually deter-

mining the sample values. I he wave could be entered by drawing
it on the screen with the mouse. A procedure to save wa\edata
to disk could be added. Procedures tor reading and writing IFF
sound files could also be added.

The ADSR envelope generator has the smallest number of
parameters that can represent a complex instrument envelope,

suchasa trumpetenvelope. Itwas popularwithearly synthesizer
designers because it provided considerable flexibility with a

minimum of components. With software envelope generators,
we can have any number ol stages and levels. In (act, the
API Envelopes module is written so that the only modifications
required to change the number of envelope stages are changing
the limits of the "Time" and "Level" arrays in the"EnvelopeRec
data structure and adding statements to the "Set£nv«ope0

M

procedure to initialize the additional stages

I or simplitth
. AudioProbel uses Ihe same waveform, fre-

quent \
,
volume, and envelope generator parameters for all four

voices Since the hardware tor each voice is independent, all the

controls lor each voice. .mid also be independent

Amiga ROM Kernel Manual: Part III

Chapter 2 - Timer Device, pp 3-29 to 3-4 1

.

/ earning Music With Synthesizer*. David Friend, Alan R. Pearlman,
Thomas D. Piggott; Hal Leonard Publishing Corporation, 1974.

DigitizedSound Playback in Modula-2". Len A. White, Amazing
Computing (May 1989). pp 45-47.

Listing One AudioProbel .mod

l^l-"i;

PurpaMi Artga Sound t»i

od

-I Do.-
I'*U". ('..ylnvului'i. %r<

-
:

nKW ftp;

ACs TECH ,U

pa cone
lim^.
Iirq» :

REAL;
IivqOocayTiBe • HtALi

:'.?i ;:».

-EA-:

us.il>. Bl ' 1

VkP Stale-. AH.^A'

Ha:-

notan Cak

I

IIQH l tea l

END Ca.

RIAL:

"
.

Calcula:aSca la
(• Mwi play volar-

ilayva,

Pauar

i

3tooVt.

Pauaa i

•

tyty
Memory

Management, Inc.

Amiga Service

Specialists
Over four years experience!

Commodore authorized full

service center. Low flal rale plus

parts. Complete in-shop inventory

Memory Management Inc.

396 Washington Sircci

Wellesley. MA 02181

(617)237 6846

Ci'cla 103 on ReaOer Service eaid

/M
' '

BKIK

volHci'

SotFt«n

SatHanaVnl iiS»

tutlaacVolitfi-
SaiBanr'.

DO Pla,

.

.
i .

bioim

.

Vol. 2. Num. 1 .01991

,. .-:

"

COK5T
.

..ng vol,
f(* vn.

ir* 10. VQl);

.
*

"B» TO

' !- CO

-i"*. l»j

HAL

LOOP

DID • •

•

'
'

. , TIM?

M* l

*

1

If SUBI.i

AC'S TECH'"

PMCSOUM KilrfUrim i.

VA*
MVfArrayi AORAY

WIN
wavrArray 100)
-jv-At (4/1021
waveAr ray (04)
wsveAl ray IDA 1

wavaAr ray (08 I

wavaAr ray (10

1

avbAi ray (121
waveAr ray (14)

1/116)
•dvniny I Id)
wavaArray (20)
wavoArra/122!
wavaArray | 24

)

wavaAr ray 1 26

1

waveArray|2B]
wavaArray 1)0!
wavcAi;a/H2i
wavaArray!)4i
-sveAr ray 1 16 i

wavaAr ray I IB)
wavaArray [10]
•vf'r ray (42

1

...v-tijay[44)
mveAriay [46 I

waveAr ray (4B)
wavaArray (iO!
(• rake wav* •

MlvWlM : •

wavaButfLar, ;
wa vcBi 1 1 Pi r i •

DID MdfcaClannet.:

AY IQ..SII OF INTEGER;

•t
• 006: waveAl I ay

IJOi wavaAl : .,

• 1J*H waveA

i

• 124: waveAr ! ay
- 122;

122, wave':
wavaAr r>.

wava>:
"»V"*1

'

.
waveA '

I

...

i. 122; wavaAr

I

i- 122;
la 135f wavaAr

1

i- 12J; wavaAr
, I

.- 105) wavaAr ra. .

ii 002) waveAr i

la 000: waveArraylll] i. 000:
i. 000; .•v*»tiiy())| a 002;
• 001: waveAr ray !)6] a 00*i

l> 00%; wavaArray I)') :• 005)
I. 007) wavaArrayl)9l l> 007,
• 00'; wavcArray

! 41

]

:• 007;
1. 007) wavaArray:*)] IB 00'i
I* 00'

i

waveArray.'45] i- 001;
• 002: wavrAr

1

.

. 000;
• C06: r«]

*CI*rin«t*;
-iveAnnyl •

rtakeWaveFrOiArr../
I
wave.'.

PROCEDURE KakeFluleU:

VAJ
wavaAr ray i ARRAY 1 . , * 11 Or INTEGER!

KIN
*

wavaArray 1 DO) ! 000: avaA:
-jv-Ar:ayl02I i> 0)0, waveAr i .

wavaArraylO*] a 0*8: wavaArray (06

1

• Otli
wiveArray i 06] (• 061, waveAr: >

waveArraytCH) i- 078; wavaArray 1091 • 086)
wavaArray 1 10) .

waveAr

:

. 0941
waveArt ay (12) 1 - 099; waveA I :

wavaArray(14] IB 109; waveAr ray 115] • 109)
wavaArray ! 16! waveAr i ay 1 1 7

J

wavaArray! IB] ; 117; "*.'"i 1 122;
wavaArray(20J : 124; waveAr: .

waveAr ray | 22) ,. 127, -aveAcaylJli
vav«Array(24] wavaAriay|26|
wavaArray 126] T. 127(wavaArray i

2"

1

wavaArray |2B

1

waveAr ray j 29

1

. 122;
waveArrayjlO] i. I22j waveAr i>
wavaArray 1 12

!

-i.rti ray ())

I

wavaArray 114] wavaArray [)6]
wavBArra/Jlei T. 107) waveAr .

I

• 099:
wavsArrayllB ..

.
wavaAr ?

wavaArray 14C
wavaArray (42 1

"

.

.

wavaArray 1(4
wavaArray !

4'

wavaArrayU".
waveAl

:

wav i-,\i t ay
wavaArray | 62

1

(04); waveAr l

i

• 0)li
waveAr ray (541 :. 02'; waveAr ; . 020)
wavaArray(56) r. 012; waveAl

:

wavaArray (SB) ;• 004: wavaAr ; -.

.

002)
wavaArray(60] i« 002: wavaAr i 002:
(• t*ake wave
wavaSoa . • 'Flute

.

wavaftudLan . . HfSHi.avaArrayl - l f

wavai' . Hakex* • ricaiArraylwava
EKD Makerlur-e:

PROCEDURE SelactWavaForBlcharr CHARI;

MCIH
t • r it i ease old wava but f • •

RalaaaoWavoBuHar iw... -oKLafii;
DM wavelor

CAEE CAP I char I OF
--"

- v.-a rile Nana- •)
|

Beads I r i fwn wavaHajte) ,

.

IF HOT wavePcniH
-.use, -avahuf (dr. waveBuifL-n

THEN

• *

*

taaveHaae

.

- •

'NOIM'I
•iDl

'

*

ind .

•in i

•S lna

"

i

10D.
MakaSin«Wiivalwavesul!L«i>i

BEGIN
'

'
•

i

'-jFrotoal ');

Vol.2. Num. 1 I 1991

-

"ritastri

volHod

i. MM*,!**;.

-

"

'

'. r 1 ng (
'

•W-l»ad *av.For» M
•

1

;!• "Ij

'

9-Nokar

*

'

•

"

WniaGi
g

•'

S-PIiy tMph
*

. . '
"

•

i* accept and p ocBia commmI * 1

irl j

CASE CA.

Play-

- "

-'

- jt*S*Bpl» Cy
PaaOCard

i
'-*',

1

:
"

- - - -

"frujMincy lnv*lop«*.

f[«q:>ac«,

' '

— lope'.
volHodAnt.

*olD*cj.

volNalaaiaTina

DO) I'll •

.„.

• '

Read**

ELSE
CASE-

(

i

END t*LOO»*lr
-and a

j

*

!(—r-nr.cy
fiaqKodArl
IrwqAf >

1!

..» Ota i

VOlAtl.i

•a*pl«Vi
snvwlopai "1

- TO 1 DO

iyTUM
a

vol Ce 1»**«T . f«

Jteijttc: i .

•I H*|J
-.ate voic-i *i

: i THIN

M -aval'

ai—.f
SvtVoicrHavall. vi-
SatVOi-r.

'

(Remaining AudioPnjbt listings are on disk!—Ed)

AC'S TECH™

WmHATHAS WM COLORS, 24-BITFRAME BUFFER
+GENLOCK+FRAMEGRABBER+FLICKER-ELIMINATOR
+PIP+ VIDEO TITLER+3D MODELLING SYSTEM?}

Introducing the

IMPACT VISION 24 from GVP
All-In-One Video Peripheral for the A3000 and A2000The All,

IfyouYeinto video, IMPACT VISION-24

is truly a dream come true for your

A3000 or A2000. It is the first multi-

function peripheral specifically

designed for the A3000's video

expansion slot.

With the optional A2000 genlock slot

adaptor kit, it also perfectly comple-

ments and enhances the A2000.

Check out these features, allpacked
on a single Amiga expansion board!

Separate Composite

and Component Video

IRC8+ Sync) Gertodts.

RGB genJocfe opcntcs

in ihcdiptal domain,

tor digitally perfect

production studio quality mixing: no color

bleeding no ghflffinfl, no artifacts . J

1MB Frame Butter. 1 fcpUy 24-bit 16

million color images on your Amiga
monitor. On a multi-sync monitor, you can

even display 16 million coloi images tn

rjon-inttdaced mode'

Hearome Framegrabber Drgrtner.

:

grab and store iin standard 4096 or 16

million color IFF format' any Iramc trom a

"live" incoming RGB video source.

Optional "RGB splitter' icquircd to grab

incoming composite or S-VHS video

Rtcter-FJtmKatflr. Duplicates and enhances

die UOOffiS display enhancer circuitry It

even de-interlaces live

external video!A must lot

any A21XJ0 owner. Ask

about our A2000 "genlock

slot trade-up" program

|in case your genlock slot

is already used bv something less exciting!

amunaneous Component Video (RC8) Out.

Composite Video Out and s-vhs Video Out. \ ,.

anything vou can see on vour Amiga
monitor can be' recorded on video tape

traced 2-t-bit

A/-
including animations. ra\

images and mure**^^^

PWurHrMWiri (PtP) Display. I revre

resize, rescue andor reposition live i

mg RGB video lust like anv wojubcncl:

window at the double click oi a mouse v.

the pressing ol .i "hot key" With a multi-

sync all this can even be in rock steady

dc- interlaced mode. Unique "reverse I'll'

leaturc, even allows you to place a lullv

luncthmal Amiga workbench |or other

application 1 screen as a SCALE-ABLE Ishrunk

down' and re-positH>nabJe window owi
full-screen live video.

pV To make sure you can take full and

immediate advantage of even1 feature of

your new Impact Vision 24 video-station,

we even include the following software

with even- unit

• Caiprt -4V24. An exclusive

version ot the leading

broadcast quality, 3-D
modelling and rendering

program. Use your imagination ^^^ Wl
to model 3D, 16 million color, *W ^^^
-cenes Use your digitized video ^ itWC -d
Images as textures to wrap around '
any obiect

1 The mind is the limit!

• SCAIA -IRMaj. Easy-to-leam, video

titling package complete with lots of

special fonts and exciting special

transition effects- Turn your Amiga
into a character generator,

• MACflOMHT W24. A 2D, 16 million color

nam ,™i crafT that lets vou have lun wt

pre-*- .configurable! "hot key" Pa Ktf
vate any feature.

GVI'. wc wanted to make a nuior impact

on the use o(the AJQ00/2O00 by profes-

sional video enthusiasts. With the Impact

Vision-?-! we have'

For more information on how the tappet

Vision 24 can have a maior impact on vour

video productions, call us at 2^-337-8770.

impacTvisions

creating or manipulating any 16 million

eoloi 24-bit image

Camp* Pant Provides full software

control over all Impact Vision-24's numer-

ous features. Use your mouse ot simph

GREAT VAUEY PRODUCTS, INC.
(.0(1 Clark Ave. King of Prussia. PA 19401.

For more information or your nearest GVP
dealer, call today. Dealer inquiries welcome.

Tel. (215) 337-8770 • FAX (215) 337-9922

Circle 106 on Reader Service card

...

Valuable utility programs
can save you time, monc>

and, in the case of cata-

strophic errors like hard

drive failure, possibly

months of work.

Quarterback Tools -

Recover Lost Files

Fast and easy Reformats

all types of disks - either

new or old tiling systems -

new or old Workbench
versions Also optimizes

the speed and reliability

of both hard and (loppy

disks Eliminates file frag-

mentation. Consolidates

disk space. Finds and fixes

corrupted directories

Quarterback -

The Fastest Way
To Back-Up

Baddng-Up has never

been easier. Or faster.

Back-up to, or restore

S/WEIT.

MOVE IT.

GET IT
RACK.

Back-Up . . .Transfer. . .Retrieve
Quickly And Easily
With Central Coast's

Software For The Amiga

i

- • t

1

1

*&»

from; floppy disks, stream-

ing tape (Ami^aOOS-

compatible), Inner-

Connection's Bernoulli

drive, or ANY AmigaDOS-
compatible device.

Mac-2-Dos
& Dos-2-Dos -

A Moving
Experience
It's easy. Transfer MS-DOS
and ATARI ST text and
data lilt's to-and-Irom

ArnicaDOS using the

Amiga's own disk drive

with Dos-2-Dos. and
Macintosh files to-and-

from your Amiga with

Mac-2-Dos' Conver-

sion options for Mac-
2-Dos include ACS1I.

No Ct inversion,

MacBinary, PostScript.

and Mac Paini co-and-

from IFF file format

•AV,/imo external

Macintosh 'I'll''

Central Coast Software
A Division Of New Horizons Software* Inc.

206 Wild Basin Koad. Sum- 1(f). Austin. Texas 78746
(512)328-6650* Fax (512) 328 1925

QHmrtnim fcTtnA QHarWftktel Out - Dot mf "". -' Out <*> Mti itiiikmwlu
'limn fM

Circle 104 on Reader Service card

